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PEEFACE.

Thebe has existed for soi^e time past a. general feeling

that the Laws of Motion form the only satisfactory basis

on which the science of Statics can be built. So far as I

know, all the text-books in use in Cambridge except Fto£

Minchm’s, treat the subject from quite a different point of

view. In this*text-book I have endeavoured to supply

%he waqts of students, ^o arp not sufficiently advanced

in Pure Mathematics, to read with advantage Professor

Minchin’s treatise on Analytical Statica

• Deducing from the Newtonian definition of force and

the parallelogram of velocities, the paralklogram ofjbrcea,

I obtain the necessary conditions of equilibrium for any

material system by means of the third law, without assum-

ing the transmimhlity of force^ or supposing the system

to become rigid. From th^se and certain geome^cal
considerations follow the sufficient conditions of equili-

brium of a rigid body. This involves the introduction of

the conception of the mpment of a force abouba line, and

certain geometrical prSpifSiUSi^i which may be regarded

as somewhat difficult for a beginner : I am in iiopes that,

these difficulties will not be found insuperable, as it seems

to me that there m a distinct gain in clearness and

simplicity by this mode of treatment of the subject* The

Appendix on indefinitely small quantities has been added
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to enable the student, who is unacquainted with Newton’s

Lemmas and the Differential Calculus, to* follow the

methods used in the chapters oh the Centre of Mass and

Virtual Work.

For the sake of students beginning the subject, easy

numerical examples on the preceding propositions have

been embodied in the text. The articles, marked with an

asterisk, ;may be reserved for a second reading of the sub-

ject. Explanations and illustrations are pHnted in smaller

type than the articles relating to general principles. With

the view of making the diagrams more intelligible, the

bounding lines of physical surfaces are drawn thicker.than

lines representing forces, and lines drawn merely to obtain

a geometrical solution of the problem are dotted.

I havn referred continually 4o Thomson and Tait’s*

Natural Philosophy, and have also consulted Jellett’s

Theory of Friction. Several of the Illustrative Examples

are taken from Dr Wolstenholme’s Collection. . ^

I am much indebted to Mr E. W. Hobson, M.A., Fellow

of Christs College, for many valuable suggestions, and also

to Mr J. B, Holt, B.A., Scholar of Christ’s College, for his

kind criticisms and assistance.

Cubist’s College, Cambridge,

Jjpnl, 1886 .

JOHN GREAVES.



PREFACE TO THE SECOND EDITION.

A FEW articles, -which seemed wanting in clearness,

have been re-^vritten; and I have introduced Coulomb's

empirical formula for taking into account the . rigidity

of ropes used in machines, as well as a description of

Weston's Differential Pulley. Many errors in Examples

• have been corrected, and it is hoped that very few now

remain.

.

April, 1888.
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STATICS.

chaptp:r I.

STATICS OF A SINGLE PARTICLE.

•

1. When a point is changing its position i datively
to surrounding points, it i^ said* to be in motion relatively

to them : if it is not changing its position, it is said to be
at rest

If we considc; not only the actual change of position,

but also the time which the motion occupies, we bring in

the idea of rate of motion or velocity,

2. Def. If a point moves over equal distances, *in

equal sliccessivo intervals of time, no matter bow short

the intervals ar^, the velocity of the point is said to bfe

uniform. If the distances are not equal, the velocity is

varying.

For the velocity to be uniform, it is essential that thei distances be

equal, even when the intei«mls of d^e are indefinitely small: for

instance, we may imagine a train fnivelling 30 miles during each of>

several jiuccessive hours, yet we should not describe its motion as

uniform, if the distances travelled during the different minutes were not
all equal, nor yet, even though the distances travelled during the

different minutes were so, provided those travelled during the dinerent

seconds were not always the same, and so on indefinitely,

G-
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8. If we wish to give any one a clear idea of the
magnitude of some physical quantity, we describe it as

bearing such and such a ratio to some definite arbitrarily

chosen amount of that quantity, known to him. The
known definite amojint is .called the u?iit of the physical

quantity generally, while the ratio is called the nmierical

measure, or simply the measure of the particular amount
under consideration.*

If for instance, the area of a certain field be 12} acres, and an acre

be chosen as the unit area, the latio of the area of the field to that of

the unit is 12}, which is therefore the numerical measure of the area of

the field.

We shall suppose then, that we have fixed on some
particular length as the unit length, and some particular

interval of time as the unit of time.

If the velocity of a point be uniform, its numerical'

measure* is the numerical measure of the distance

traversed by it during the unit of time. It may happen
that the point’s velocity, though uniform for a finite

interval of time, is not so for the unit of time : in that

case, its numerical measure is that of the space the point

would traverse during the unit of time, provided it moved
throughout with the same velocity as during the finite

tijme. The velocity which we call the unit velocity, or

whose numerical measure is one, is the velocity of, a point

which traverses the unit of length in the unit of time.

Bef. The mean or average velocity of a point during

any interval of time is the velocity with which a point,

moving uniformly during that time,would describe the same
distance. <-Its numerical measure is therefore the numerical
measure of the distance described* divided by that of the

time recpiired.

Def. The velocity of a point at any iastamt, is the
limit of the mean velocity of the ^oint during an interval

of tWe induj^g the particular instant, when the interval

is diminished indefinitdy.
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£x« 1. Compaxo the velocities of t^o points which move uniformly,

one through 5 feet in half a second, and the other through 100 yards in

a minute. Ans, 2 : 1,

Ex. 2. A railway train travels 160 miles in 6 hours 80 minutes.

What is its average velocity in feet per second ? Ant, 86*1 nearly.
%

* •

Ex. 8. One point moves uniformly twice round the circumference of

a circle, while another moves uniformly along the diameter: compare

their velocities. • An$, 2r : 1.

Ex. 4. A fly-wheel is 14 feet in diameter, and is observed to go round

uniformly fifteen times in a minute : find the velocity of a point in the

circumference*. Ans, 11 feet per second nearly.

Ex. 5. Supposing the earth to rotate about its axis in 28 hours

56 minutes, its equatorial diameter being 7925 mUes, find the velocity of

a point at the equator relative to the earth's centre, in feet per second.

Ans, 1526 nearly.

, 4. Now a ^locity is entirely known, if its direction

and magnitude are known.
^
But as a straight line AB can

be drawn in any direction, it can be drawn so *as to in-

dicate fully the direction of a
point's velocity, provided we shew Rg.i

either by an arrow-head or by the a ^ b

order of the letters AB^ the sense

of the velocity, i.e. whether its

direction be from to jB or from B to A, As we ‘can

make the line of any length, we can make it so that its

length bears the same ratio to some arbitrarily chosen
length as the velocity considered bears to the unit of

velocity. If this be done, and we know the scale^ i.e.

the length chosen to represent the unit velocity, the line

AB will also represent the magnitude of the velocity con-

sidered. •

5. A point may be moving witU several independent wBlodties at

once : for instance, we know that the earth as a whole is describing an
orbit about the*eun, and that ^ points on the earth’s surface axe

describing circles about theeearth’s axis; if then, a point be moving

on the earth’s* surface, it has relatively to the sun, /Ihree indepcjKde&t

velodties, viz. its vdocity on the earth’s surface, the vdodtiy of the point

1—2 •
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of the earth’s surface it occupies at the particular instant, relatiyely

to the' centre of the earth, and the velocity of the earth’s centre about

the sun.

Def. When a jioint has several independent veloci-

ties, the single velocity which would alone give the point’s

motion is called the resultant of the other velocities.

Let us consider the case of a point moving in a straight

line along the deck of a ship, with uniform velocity

relative to the ship, which is sailing with uniform velocity

in a straight line along the earth’s surface. It is required

to find the point’s motion relative to the earth’s surface,

i.e. given its position at one instant, it is required to find

its position at the end of a given time. Now since the
point’s motion on the ship’s deck is entirely independent

of the ship’s motion, if we suppose the point fixed to the

deck during the time considered, so that \ts motion is that

of the ship, then the ship to remain stationary while the*

point moves for an equal tinoRj along the deck with its

velocity relative to the ship, the final position of the

point will be the same as if the two motions had taken

place simultaneously, as they really do.

The above illustration exemplifies a general axiomatic

principle, which may be stated thus: if dunng a certain

time a point has several independent motions^ its actual

position at the end of^any portion of that time may he

found hy imagining that all the motions take place

separately during a number of successive periods of time

equal to the one considered, instead of supposing that all

the motions take place simultaneously, which is what
really takes place. Of course the imaginary motion only

gives the same initial and final positions of the point as

the real one, and not in general intermediate ones, although

by taking the periods of time very small, but very large

’in number, the imaginary motion which gives us the real

position of the point at the end of each bf them, will

i^ve us an infinite number of poii^ts on the point’s actual

TOth. The motions referred to above are not of necessity

due to uniform Telocities.
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The Parallelogram of Velocities,

6. If the two independent velocities of a point he

represented in magnitude, direction and sense hy two

straight lines drawn from, (or to) a point, and a parallelo-

gram he constructed on them as adjacent sides, the resul-

tant velocity is represented in magnitude, direction and
seme by the diagonal drawnfrom {or to) the point ofinter-
section of these sides.

Let the lines OA, OB represent in ma^nituSe, sense

and direction the velocities u, v of the point: complete

the parallelogram OAGB, and join 00

\

then 00 shall

represent the resultant velocity. If 0 be taken as the

Fig 2

initial position of the point, its position at the end of a

time t can be found by supposing that it first moves

with the velocity u for a time t, and then* with the velo-

city V for the same time. If it moves with the velocity

u alone, it will at the end of a time ^ be at a in the

line OA, where Oa — ut\ if now it moves with the velocity

V alone for a time t, it will arrive at c, where ac is

parallel to OB, and ac — vt c then is the position of the

point at the end of a time t, when the motions take place

simultaneously. ,

But because ac : Oa^A O,: OA, c is in 00, i^, 00 re-

presents the direction of tho resultant velocity. the

magnitude of the resultant velocity is to the velocity OA
as Oc is to Oa, i.e. as OC ,0A : hence 00 represente the

magnitude of the resultant velocity. The sense oi the

resultant velocity is clearly OC.
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The above proposition holds at any^instant, even though

the independent velocities be varying velocities : for it is

only necessary to suppose that the time t is ultimately

indefinitely small, and the above proof holds.

Ex. 1. If a boat oin steam 9 miles an hoar up stream, and 13 miles

an hour down stream : find the velocity of the stream.

Ans, 2 miles per hoTir.

£x. 2. Velocities of 4 feet and 16 feet per second in directions at

right angles to each other are simultaneously communicated to a body

:

determine the resultant velocity. An$» 16*49 feet per second.

Ex. 8. A ship whose head points N.E. is steaming at the rate of

12 knots an hour in a current which flows S.E. at the rate of 5 knots an

hour, find the velocily of the ship relative to the sea bottom.

.

* Ah8, 13 knots an hour.

7. All the objects around us that 7ve can see and^

touch, and even invisible substances, such as air, are

fl^iafenarbodies or composed of matter. The various pro-

perties of matter, such as hardness, density, &c., can be in-

vestigated, but no definition of matter can be given which
would give any idea of it to a being that had had no ex-

perience of it.

Any limited portion of matter is called a Material

Body or simply a Body. When we consider a body
whose dimensions are so small that we are only concerned

with its motion as a whole, and not with any rotational

motion it may have, we describe it as a material particle^

or simply a particle.

The term Mass is synonymous with the phrase

Quavtity o^ Mattery so that the mass of a body means the

quantity of matter in it. ^

If two bodies are composed of the same substance

under the same conditions we can compare their masses

by comparing their volumes. Thus a qudrt of water
con^ins twice as much matter as a pint. Liquids
generally are sold by volume. In the case of solids it is

often difficult to determine their volumes and when
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substances are of different kinds we cannot assume that

their masses are proportional to their volumes. We*shal!
learn in Art. 9 how to find the ratio one mass bears to

another.

The Momentum of a body is measured by the product
of its mass into its velocity. Its direction is the same as

that of the velocity^.

8. Statics is the science which treats of the equi-

librium of bodies under the action of Forces, A defini-

tion of the term Force is supplied by Newton’s 1st

Law, which asserts that *Every body remains in a state of
rest or of uniform motion in a straight line, except in sofar
as it may he compelled by impressed forces to change that

stated .

Force, then, is that which alters or tends to alter the
« state of rest or l^f uniform motion in a straight line, of a
body. It is not necessaryio suppose that the state of rest

or of uniform motion is oMually altered by a force, because
other forces may be in action which counteract the effect

of the first. If we observe a body moving in any way
other than uniformly in a straight line, we infer that it is

acted on by force: e.g. when \re find that the planets

move in nearly elliptic orbits, we know that each is under
the action of some force : similarjy when'we see that a
falling body moves with gradually increasing velocity, or

that another is stopped, we know that a force has acted

on each* of them. If a force acts for a time on a body,

producing a change in the body’s velocity, it is clear that

if it continues to act, it will tend to produce a still further

change.
^

We are all of ns familiar ' (jzpe instances of the manifestation of

force. For instance, we may set ^ body in motion or stop i# by pushing

it, either directly with the hand, or by means of a rod, or we may pull it

by a string attached to it : tre may also expose it to the action of the

wind or to the pressure of sttam. In all these cases the force is ^erted

by tangible ipeans, but force is often manifested without any tangible

means, as in the case of groeitp, the name gim to the force which causes
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any body near the earth to move towards it, and the planets to revolve in

their dlrbits about the sun ; also in the case of the force whiuh causes

small pieced of iron to move towards a magnet held near them. A force

of this kind is called an attraction,

9. The next question that presents itself is ' How is

force measured ? * or ‘ When may this force be said to bear

such and such a ratjo to that force ? ’ We know by ex-

perience that it requires a greater effort on our part to

impart a given velocity to a large amount of any substance

than to a small amount, but what determines the exact

ratio that exists between the two forces ^

Our own sensations do not give us an accurate scale by
which the forces may* be measured. The answer is con-

tained in Newton s 2nd Law, which asserts that * Change of
nmtion is proportional to the impressed force and takes

place in the direction of that force . o

By OlifiLiige of Motion ismea/it Change ofMomentum in

some fixed time, the unit oftime for instance. The Change

of Motion is therefore the product of the mass acted on into

the change of velocity produced in a given time.

First, let us suppose that a number of different forces

act on the same particle during equal intervals of time, so

that the only variations in the different cases are the

differences in the forces and in the changes of velocity

produced as the mass in each case is the same. Hence
forces are equal if, when they act for equal times on the

same particle, they produce equal chailges of velocity, and
the ratio between the magnitudes of two forces is the ratio

between the respective changes*of velocity they produce in

the same pjbrticle, after acting for equal times.

The direction of a force is clearly defined by the latter

part of the law as the direction of the change of velocity

produced by the force.

It is of course to be understood that the change of velocity meant is

not n^ssarily the increase*or decrease oi the particle’s velocity, but

that velocity which, compounded with the particle’s initial velocity, will

give the final velocity*
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Next, let us suppose that a number of forces act one on
each of a number of particles for the same time; and
produce the same changes in their velocities. Since the
change of velocity produced iii each case is the same, the
forces are proportional to the masses on which they act.

Hence masses are eqiml when equal forces produce in them
ii\ equal times, the same change of velocity. Also the ratio

between two masses is the ratio between the forces which
produce in them the same change of velocity in the same
time. * 4

10. In both theoretical calculations and in actual

practice we must fix on some standard force which is to be
the unit. In theoretical calculations we take as our unit

the dyne, which is the force required to generate in one
second a velocity of 1 centimetre per second in a mass
equal to that (Si a cubic centimetre of distilled water at
4® C. This is called the qpsolute unit and the advantage
in its use is, that all the terms involved in its definition

are the same at all points of the earth’s surface and indeed
everywhere.

It is found that if bodies be allowed to fall towards the earth in a

vacuum, so that the air does not resist their motion, the velocities with

which they fall are increased every second by an amoiyit always the same

at the same point of the earth’s suiface, and nearly so all ovef it. The
force which produces this change of motion in a body^is called its

Weight ‘ hence the weights of different bodies are proportional to their

masses, since the change of velocity pioduced is the same for all.

It is on this account that we generally ascertain the mass of a body by

weighing the body. Assuming for the present, what wo shall prove here-

after (Alt. 13), that when a body is at rest under the aetio:^ of two forces,

they are equal in magnitude .aiftd opposite in direction, we see that the

force required to support a,bo^ is e4ual and opposite to it^. weight, and

would, if it acted alone, produce in the body the same change of motion

upwards that its weight does downwards.

In practice in Staties, f<ftces are generally measured in terms^of the

weights they would support if they acted upwards: for instance in

England that force that is just sufficient to support a certain lump of
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metal kept at the Exchequer and (^ed the Imperial Pound, is very often

regarded as the unit force, the slight variations in this force at different

places being of little consequence for practical purposes.

The velocity of a falling body is increased every second by 82 feet per

second, approximately.

Ex. 1. If a bodyVeighing 60 lbs. be moved by a constant force

which generates in it in a second a velocity of 5 feet per second, fiod

what weight the force would statically support. 4^* ^*3 lbs. nearly.

Ex. 2. ^During what time must a constant force equal to the weight

of one ton act upon a train of 100 tons to generate in it a velocity of

40 miles an hour ? Jns, 3 min. 8} secs.

Ex. 8. A force which can statically support 25 lbs. acts uniformly for

one minute on a mass of 400 lbs.: find the velocity acquired by the body.

Atu. 120 feet per second.

Ex. 4. Find what velocity a force which wouldftsiipport a weight ^of

,

n lbs. will give a mass ofm lbs. in t secs. Am. S2nt/m feet per sec.
a-

«

11. De/. The resultant of a number of forces is that

single force whose effect is the same as that of the original

forces.

It frequently happens that there are several forces acting simultane-

ously on a. body: e.g. a kite in th*e air is acted on by its weight, by the

pressure pf the wind and by the tension of the string attached to it. In

the case of a^particle acted on by several forces, we shall shew that there

is a single force which could produce exactly the same effect as the oilier

forces do. *.

The second Law of motion states that the change of

motion is proportional to the impressed force and takes

place in tne direction of that force, so that if there are

several impressed forces we infer 'that the actual motion
will be the resultant of the several independent motions
which the forces would produce if they acted separately,

because the law holds for each forpe, and therefore these

independent motions must each be produced. But this

resultant change of motion might be produced by a single
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force, which is therefore the resultant of the original

'forces. •

12. When a particle is in equilibrium pr moving
uniformly in a straight line under the action of a number
of forces there is no change of motion^ and therefore the
resultant force must be zero; conversely, when the re-

sultant force is zero, there is no change of motion, and
the particle must be at rest or be moving uniformly in a
straijght line. The necessary and sufficient condijbion of a
particle’s being in equilibrium under the action of a
number of forces is that their resultant be zero.

Note. Strictly speaking, if the resultant force on a particle is zero,

fit only shews that the particle’s velooity is undergoing no change, and not

that it is necessarily zero. As however in this subject we always suppose

the particle initially^ at rest, if this condition holds, it will always remain*

HO.

n.
,

13. We have already infeired from Newton’s second

Law, that the direction of a force is that of the change
oi^ motion it produces, and that its magnitude is ^propor-

tional to that of the change of motion : hence a force is

completely defined when the magnitude and direction of

the change of velocity it produces in a given time, in a
particle of given mass, are given. A force may therefore

be represented completely by the straight, line that

represents this change in velocity. We are now in a
position to prove the following most-important proposition,

known as the PctrgUelogmWi of Forces*

Prop. If two straight lines he drawn from (or to) a
point representing in magnitude, direction and^jensê forces

acting on a particle, ahd f parallelogram be constructed

having these two lines as adjacent sides, the* diagonal
drawn from^ (or to) the point mentioned will represent the

resultant completely.
^

.

Let OA; OB be two straight lines representing the

magnitude, direction and sense of two forces acting on
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a particle. Complete the parallelogram OACB, having
OA, OB fox two adjacent sides,

® and join 00
Since OA, OB represent

the forces completely, they also

represent the changes in ve-

locity they would separately

produce in a certain time m
a particle of certain mass.

By the parallelogram of ve-

locities then, 00 represents the resultant change of

velocity they would produce in the same time in the

same particle, and therefore represents the resultant of

the original forces.

The following particular case of this proposition is
^

•very important. Since the diagonal of parallelogram
always has a finite length unless the two adjacent sides

are equal •in length and in qppo^lte directions, the resultant

of two forces is necer zero, i.e. two forces do not counter-

balance one another, tinless they are equal in magnitude
and opposite in direction,

Oor, If three forces not in one plane acting on a
particle, be represented in every respect by three lines OA,
OB, 00 drawn from a point, and a parallelepiped’ be con-

structed oi\these lines as adjacent edges, the diagonal OG of
the parallclopiped represents the resultant in every respect,

E 0

a

Flg.4
^

For OF is clearly the resultant of OA and- OB, and
since OFGO is a parallelogram {00, FG being equal and
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parallel), OQ is the resultant of OF and OG, i.e. of OA,
OB, 00.

Ex. 1. Find the resultant of two forces of 12 lbs. and 85 Itw. respect-

ively, which act at right angles on a particle. Ans, 37 lbs.

Ex. 2. If two forces acting at right angles (o each other be in the

proportion of 2 to and their resultant be 9 lbs. find the forces.

Ana, Gibs., Sa/H lbs.

Ex. 3. The resultant of two forces which act at right angles on a

paiticle 18 51 lbs. : one of the components is 24 lbs.: fi*nd thepther.
Ana, 45 lbs.

Ex. 4. Two forces act on a particle, and their greatest and least

possible resultants are 17 lbs. and 3 lbs. : find the forces. *

Ana, 7 lbs,, 10 lbs.

Ex. 5. Two forces acting in opposite directions to one another on a

particle have a resultant of 28 lbs. : and if they acted at right angles they

would have a resultant of 52 lbs. : find the foices. Ana, 48 lbs., 20 lbs.

Ex. 6. Two forces, one of which is three times the other, act on a

paiticle, and are such that if 9 Ibi. be added to the larger, and the smaller

be doubled, the direction of the resultant is unchanged : find the forces.

• 9 lbs., 3 lbs.

Ex. 7. Shew that if the angle at which two given forces are inclined

to each other is increased, their resultant is diminished.

Ex. 8. If the resultant of two forces is at right angles to one of the

forces, shew that it is less than the other force.

Ex. 9. If the resultant of two forces is at right angles to one force

and also equal to the other divided by ^2^ compare the forces.

Ana, 1

:

Ex. 10. Two forces are represented by two chords of a circle, drawn

from a point on the circumference at right angles to one another: shew

that the resultant is represented by the diameter which passes through

the point.
>

14. Prop. If a pUri^ be in equilibrium under the

actim of a number of foices^ any one of them is equal

and opposite^ to the resultant of the rest
•

From the definitiun of a resultant, all the forces but

one can be replaced by their resultant without altering

their effect, so that this resultant for^ and the remaining
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force maintain equilibrium, which we have seen can only
be the case when they are equal and opposite.

15. The following proposition known as the Triangle

qf Forces is practically another way of stating tEe Paral-

lelogram of Forces.

.

Ifthi-eejor^ acting on a particle can he represented

in imgnitude^ direction and sense by the sides of a triangie,

taken in order, theforces are in, equilibrium.

By the phrase * taken in order* is meant, that the arrowheads which

indiofite the directions of the forces, should all point the same way round

the triangle, or that no two should both point to or from the same
point.

Fig.6

Let ABC bo a triangle whose sides AB, BG, CA,
taken in order, represent in magnitude, direction and

sense three forces acting on
a particle—the particle shall

be in equilibrium.
• Complete the parallelo-

gram BCAD. Since BD is

equal and parallel to CA, it

will represent the force repre-

sented by CA : but the re-

sultant of the forces repre-

sented by BC, PD is represented by BA, and is therefore

counterbalanced by the 'force represented by so that

the three forces produce equilibrium.

16. Conversely, if threeforces keep a particle in equi-

librium, and a triangle be dravm having its jg^es parallel

to the directions of the forces respectively, the sides are

proportional to the forces to whose directions they are

respectively^parallel.
,

Let BC, BD ^fig. 5) represent two of the forces : then,

since they are in equilibrium, AB must represent the

third. JBut CA is pjarallel and equal to BD, therefore the

triangle ABC has its sides parallel to the three forces^ ^

4|lid also proportional to them respectively. Any triangle

^en, that has its sid^s parallel to the three forces /espec-
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tively, must have them parallel to the sides of the triangle

ABG^ and must therefore be equiangular to this triangle :

equiangular triangles are similar ones, so that the 'forces

are proportional to the sides, to which they ate respectively

parmlel, of any triangle drawn in the way described

This proposition may be extended thus: if threi^ forces keep a particle

in ^uilibrium, and a triangle be drawn with its sides making a constant

angle measured in the same direction, with the directions of the forces

respectively, the sides of the triangle are respectively proportidnal to

'

the forces with whose directions they make the constant angle,

For if the triangle be turned in its own plane through an angle e^ual

to the constant angle, but in the direction opposite to that in which the

angle is measured, each of its sides becomes parallel to the directionwith

which it previously made the constant angle, and the proposition becomes

identical with the previous one.
•

17. The Triangle of Forces can be easily extended
to the Polygon df Forces, which is: If a particle be tmder
the action of a number of forces, which can be represented

by the sides ofa polygon taken in order, the particle will be •

in equilibrium.

Let the sides A*B, BO, CD, DE, EF, FO, GA of the

polygon ABGDEFQ, taken in order, represent a number
of forces acting on a particle. Join AC, AD, AE, AF.

By the Trian^U^of forces, the forces represented by
AB, BO can' .be coubter-

balanced bj CA, therefore

represents their result-

tant; similarly the resultant

of AG, GD% represented

hy AD, AD, DEhy „
AE. tlTat of AE, EF hy "

AF, and 'that al^AF, FQ
by AO

;
therefore ihe' re-^

sultant offorces represented

^ AB, BCk CD, DE, EF,
FO is represented hy AO',
but foroes representra by AO, OA counterbalance one

another so that the original forces are in equilibrium.
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Note. The forces are not necessarily in one plane. .

Cbr. To obtain geometrically the resultant of a num-
ber of forces acting on a particle. Draw a series of straight

lines, end to end; AB^ BC, OD, DE, EF, FO to represent

completely the forces, whose resultant is required, tlien

join AQ, it reprefeonts completely the resultant.

The following particular case of the polygon of forftes

« may be noticed : tbe resultant of a number of forces on a
particle,^ and in the same straight line, is their algebraical

sum, the forces being estimated positive in one direction

and negative in the other.

The converse of the polygon of forces does not hold, because equi-

angular polygons are not necessarily similar.

1

18. The following theorem, enunciated by Lami. is

the parallelogram of forces in another form.

‘ Prop.. If three forces activg on a }mrticle, keep it in

equilibrium, each is proportional to the sine of the angle

between the other two.

Let OA, OB, 00 represent three forces P, Q, R which,
acting on a particle, keep it in equilibrium.

With OA, OB as adjacent sides complete the parallelo-

gran? OADB

:

join 01).
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OD, 00 must be equal and opposite, since OD
repre80nts the resultant ofP and Q. •

P : Q : R^OA : OB : OC^OA : AD : OD
= sin ODA : sin A0D^ : sm OAD
= sin DOB : sin A OD f sin AOB
= sin BOG : sin AOC : sin AOB
= sin (Q,R) : sin (P,P): sin (P, Q).

19. The magnitude of the resultant R, of tt^o forces

P and Q, which act on a particle, and whose directions

make an angle 0 with one another, may be easily found.

Let OA, OB represent the forces P, Q respectively.

Complete the parallelogram OBCA, and join 00: the
latter represents P.

Fig 8

But 0(7* = OP* H- PC« - 20P . BG . co*s OPC,

P0=:40,and OP(7=180°-^OP’
= 180"-^,

P*^P* + g*-h2PQcosft

Ex. 1. If forces of 3 lbs. and 4 lbs. baye a resultant of 5 lbs., at what

angle do they act? • Am* r-
Ex. 2. If one of two forces aetl^^g on a particle is 5 lbs., and the

resultant is also 5 lbs., and at nght angles to the known force, find the

xnagnitud^and ^ection of the other force.

Am, 5tj2 lbs., n\^kmg an angle of 186<^ with the other force.

Ex. 8. At what angle must forcesF and 2P act on a particle in^rder

\that their resultant may be at right angles to one of themr Am. 12(P.

G. . 2
*
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Sx. 4. If three foroee, whose magnitudes are expressed bjr the

numbers 8, 6, 9, act on a particle, and keep it at rest, shew that they

must all act in the same straight line.

Ex. 6. Shew that three forces cannot maintain a particle in equi-

librium if one of them be greater thaq the sum of the other two.

Ex. 6. Find the fuagnitude of the resultant of (i) 3 lbs. and 4 lbs. at

to one another; (ii) 2 lbs. and 8 lbs. at 105^
;

(iii) 16 lbs. and 21 Ibs^ at

1200. Am. (i) 6-56 lbs. (ii) 3*16 lbs. (iii) 19*04 lbs.

Ex. 7. If the three forces in Ex. 4 act in directions represented by

the sides df an equilateral triangle, taken in order: determine their re-

sultant. j^ns, A force 3^3, actipg at right angles to the force 6.

Ex. 8. Three forces acting on a particle keep it in equilibrium : the

greatest force is 6 lbs., and the least is 31b<«., and the angle between two

of the forces is a right angle : find the other force. Am. 4 lbs.

Ex. 9. Two equal forces act at a certain angle on a particle, and

have a certain resultant : also if the direction of '^ne of the forces be

reversed and its magnitude be doubled, the resultant is of the same

magnitude as before : shew that fhe t^o equal forces are inclined at an

angle of 60^.

Ex. 10. Determine the resultant of four forces of 5, 6, 9, 10 lbs. acting

on a particle and represented in direction by OA^ OBy OC, OD, re-

spectively, where 0 is the point of intersection of the diagonals of a

square ABCD.
Am. lbs., in the direction bisecting the angle COD.

Ex. 11. Forces P, P^/s, «ind 2P act on a particle : find the angles be-

tween their respective directions that the^e may be equilibrium.

Alts. Between P and 90®; between P and 2P, 120®; between

P,Jl and 2P, 150®.

Ex. 12. Five equal forces act on a particle, in directions parallel to

five eonseoutive sides of a regular hexagon taken in order ; find the mag-

nitude and direction of their resultant.

Am. The direction is parallel to the^third force, and the magnitude

equal that bf any one force.

a
' 20. The following proposition sometimes useful.

two forces actvag on a partide he represented hif m
tmiea the Urn OA, n times the line OB, respeotivelg,
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iheir restdkmt ia represented hr/ (m +n) times tits line OO,
where Q is the point between A and B, such that mAG »
nBG.

By tbe triangle of forces mOA is equivalent to mGA
and mOO, and the force tA)B to nGB^and nOO. Biit

since 'mAO nBG, and they are opposite, these two
fosces counterbalance one another, so that we are left

with OG only.

21» Be/. Let A,, A3...A, be a series of points

;

Join A^A^, and take betifi^en j^hem, so that

A^B^== B^A^;

join B^A^, and take B^ between them, so that

join B^^ and take B^ between them, so that

3BJB,==B,A^

and so on until we arrive at B^^^: this point is called the
Centroid of A^, A^, a1, ... A^,

The centroid of the n points Ai, A^ ..A^ is sometimes defined as the

point whose distance from any plane is one the sum of the distances

of Ai, A^. . ,A^ from that plane. Wt can easily shew that the definition of

the centroid we have already given to this de^tion aAo.

Draw AiUfi, A^^ <t;c. perpendicular to any^ven plane.

Draw A^n^ parallel to and parallel to

9 + 2^2912

il2^1

ss SfijAg *{ 8Dj|9i||S

2—2
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This proves fhe statement for two and three points, andby the method

of indnotion the proof can easily be eztehded to any number of points.

Note. The distances from the plane must be considered positive when
they are on one side of it, negative when they are on the other. We
may suppose that any number of the points become coincident ; for

instance, if ^3 and coincide with and will also coincide with

Aj, and B3 will be in the line AiA^ and such that BgA^ssBBgAy We may
extend the idea of the centroid by supposing that some of &e points are

negative, in which case the process of finding the centroid will be some-

what modified: for instance, if Ag be a negative point, B, will be in AgB^,

but beyond B^ not between B^ and A3, and such that B3A3SSB3B1 : as B,

is the centroid of two positive and one negative point Bg will divide the

line B3A4 equally. Also the distance of a negative point from a plane

must be taihen of opposite sign to what it would be if the point were a

positive one, and in estimating the number of points, we must take the

difference between the numbers of positive and negative points.

«

52*. Prop. 1/ 0.^, OA^ OA^ <fcc OA, r^eaei^
a number offorces acting on a partiole, their resultant vMl
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he represented hy r times the line whdre B,_, is the

centroid o/A^, A,., .A,.
'

•

4

. For, by the last proposition, putting m == n *= 1, the
resultant of 0-4, and 0-4, jis 20-8^

;
putting m = 1, w=« 2,

that of 0-4, and 208^ is 308,, and so on, until we obtain

r08^j as the final resultant

After reading Chap. IV. it will be ^obTious that the centroid of a

number of points is the Centre of Mass of equal particles situate one at

each point. As a direct result of this proposition we see, that the resultant

attraction or repulsion on a particle of any mass of which each particle

attracts or repels with a force varying as its distance and its mass con-

jointly, is the same as the attraction or repulsion of the whole mass

collected at its Centre of Mass.

.Ex. 1. Find a point such that, if it be acted on by forces represented

by the lines joining it to the vertices of a triangle, it will be in equi-

librium.

The required point must be 4he centroid of the three points, i.e.

(Art. 21) the point of intersection of the lines drawn from the vertices to

the middle points of the opposite sides. *

Ex. 2. 0 is any point in the plane of a triangle ABC^ and D, E, F
are the middle points of the sides. Shew that the system of forces OA,

OB, OC is equivalent to the system OD, OE, OF.

It can be shewn that the centroid of the points A, B, C is also that of

D. E, F.

Ex. 8. The circumference of a circle is divided into a ^ven number

of equal parts, and forces acting on a particle are represented by straight

lines drawn from any point to the points of division: shew that their re-

sultant passes through the centre of the circle*, and that its magnitude

varies as the distance of the point from the centre.

The centre of the circle is cleariv the centroid of the poipts.

Ex. 4. AOB and COD are^shoAUS of an ellipse parallel to conjugate ^
diameters : forces are represented in magnitude and direction%y OA, OB,

OC, OD: >shew that their resultant is represented in direction by the

strai^t line which joins 0 to the centre of the ellipse, and in magnitude

•by twice this linb. •
^ ,

The centroid pf the points A, B,C,Dia midway between 0 and the *

centre.
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Ex. 6. Straight lines are drawn any ^int parallel to the four

sides f)f a parallelogram : find the magmtude and direction of the resultant

of the forces r^resented by tliese four straight linbs.

Aru, The direction is along the line joining the point with the centre

of the parallelogram, and the magnitude is represented by twice this line.

23. Def. Tbe components ofa force, in two or in three

given directions, are the forces which acting in those direc-

tions, will have the given force for resultant.

As it is frequently des^'rable to replace two or more forces by one (their

resultant), so also Is it to replace one force by two (its components), in two

given directions in the same plane with it, and sometimes by three in

three given directions, which are not all in one plane and no two of which

are in the same plane as the single force.

For instance, imagine a particle, free to move in a straight groove, to

be pulled by a string making an angle with the groove : it is clear that the

tendency of the force is twofold, viz. (1) to make thq particle move along

the groove and (2) to press it against the groove. Also it is clearthat the

one effect might be produced by a force along the groove and the other by

a force at right angles to the groove : these two separate forces will be the

components in the corresponding directions of the force exerted by the

string.

We have seen that the mechanical problem of compounding two forces

into one is the same as the geometrical one of constructing the diagonal

of a parallelogram, having given two adjacent sides : so also to resolve

one force into its two components in two given directions in its plane, we
have to construct the parallelogram, having given one diagonal and lines

to which the sides are respectively parallel.

24. To find the components of a given force in two
given directions in its plane.

Let 0(7 represent the force. Draw OA, CB parallel to

the line giving one direction, and OB, CA parallel to the

line giving the other. By the ps^llelogram of forces, the

force 0(7^s the resultant of OA and OB, which, being in

the given directions, are the components requjired.

We can easily express the maguitudes of these compo-
nen& in'^terms of 00 and the angles the given directions

make with 00.
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Let P be the fcwce represented by 00 and let the
angles OOA, COB^be a,

,
•

Then OA :
*0(7* sin OCA : sin 0^0

= sm COB : sin AOB
=Sin B : sin (a+jS);

Similarly that in direction *(yBe:P. .

Pin (a+ /8;

Since we can construct any number of parallelograms having a given

diagonal, the number ' wavs m which we can resolve a single force into

two is infinite. The m^jt important case is when the two directions

along which the resolution takes piace are at right angles to one another.

25. Def. When the directions of the tyo compo-
nents of a force are at right angles to one another, each

component is called the resolved part of the force in the

corresponding direction. When we speak then of the

resolved part of a force in any direction, it is understood

that the force is resolved into two components, one in the

specified direction, and t}ie >ther in the directibn at right

angles to it, and in the jflan^' containing this direction and
that of the original force,

'

Let Oir.te a given straight line, and let OA^ OA^
OA^ represent a«number of forces P,, P^ P,
whose directions, which are not necessarily in me j^ane,

make angles 6^, 0^, 0^, &c. with Oas.
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represent the resolved parts of P^, P^, P
3 , &c. respectively

along 0®, and M A^, M^A^, &c. th^ resolved parts

perpendicular to Ux. ,
• t

It is found convenient to adopt the convention that

forces in direction Oaf, from left to right, be considered

positive, while those in the opposite direction are considered

negative.

In the above figure it will be seen that with this convention the

resolved parts alon^ Ox of P, and P^ are positive, while those of P^

and P4 are n^ative.

0Jfj

=

OA^ COS 6^, A^M^ OA^ sin OM^ = OA^ cos 6^, &c.

Hence the nu^nerical values of the resolved parts of the

forces along Oos are cos 0^, P, cos 0^, &c. and those per-

pendicular jio it are P^ sin 0^, P^ sin 0^, &c.

It is easily seen that these values also give the alge-

braical vsdues of the resolved parts, the signs being deter-.

mined in accordance with the above convention.
••

Note. When the forces are in one plane, their resolved

Mrts*at right angles to Otr are in the same straight line,

Ijbint not otherwise.
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If Xi Y are the resolved parts of a force in two

directions, making angles 0 and
^ ^ respectively, with P,

we have seen that •

X==P cos 6, and Y=P siiv

P = + 7*) and tan 0 ^ Y/X.

26*. To find the components ofa force in three givm
directions, which are not all in the same plane, and no two

ofwhich are in the same plane as the originalforce.

Let the line AB represent the given force.

Through both A and B draw three planes parallel to

each pair of the given directions.^ These Six planes will

form the faces of a parallelepiped of which AB is the dia-

gonal, and each edge of which will be parallel to one of the

given directions.

By Art. 13 the edges AB, AG, and AH will repre-

sent forces of which AB is the resultant, and which are

therefore the required components. •

The case which is of*riio<^i. interest is when the given

directions are mutually at ^ight angles £o one\nother t

the components are then termed the resolved parts in the

corresponding direction^.

Let P be the given force, X, Y, Z the resolved paVfe in

the directions AC, AP,A iEfrespectively, which make angles
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a, fi, 7 with AB. Bat AC^AB cos a, AE^ AB oos

anchil jET AB cos 7,

and AB^ ^BF^+AF^^AE^^AC^^AH\
.•.-3r= Pcosa, F=»Pcos cos 7,

and ^ P^^X^+r + ir*.

Hence cos* a + cos*^ 4- cos* 7 = 1.

Ex. 1. Shew how to resolve a given force into two others, of given

magnitude. When is this impossible?

Ex. 2. Find the components of a force P, when they both make

angles of 30^ wiiih it. Ans. Each is JP^/S.

Ex. 8. Find the components of a force P in two directions, making

angles of 60^^ and 45^ with P on opposite sides.

Am. (V3-l)i’and J(8^/2-^/5)P.

Ex. 4. Three forces of 5, 2, and 7 lbs. respectively act on a particle

in directions mutually at right angles*: determine the magnitude of their

resultant. *
. 4ns. ^/781b8.

Ex. 5. Three forces, represented by three diagonals of three adjacent

faces of a .cube which meet, act at a point : shew that their resultant is

equal to twice the diagonal of the cube.

Each of the forces may be resolved into two components, represented

by those edges of the corresponding face, which meet in the point : the

three forces are equivalent then to the three forces represented by twice

the edges of the cube, which meet in the point, i.e. to twice the diagonal

of the cube. A similar result holds for any parallelopiped.

The purely geometrical propositions of the next three Articles are

extremely useful.

27 . Def, If perpendiculars be dropped from the
ends of a** given finite straight line on any other given
straight line, the len^h intercepted between the feet of

these pei^endiculars is called the orihogonal projecfdm of

the first line on the second. (The two lines ape not neces-

sarily in one plane.) ^

liet AB be the given finite line, PQ the line on which
it is to be projected.
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Draw -Aa, 56 perpendicular to PQ, then a6 is the
'orthogonal projection ofAB on PQ. •

pa Q

Wo shall make a convention here, similar to that we
have already made about the resolved parts of forces:
viz. if AB be regarded as drawn from A to B, its pro-
jection is a6, measured from a to 6, whereas if BA be
measured from JJ to -A, its projection is 6a, measured from
6 to a. The projections are considered positive when
measured from left to right as ob is, negative when mea-
sured in the opposite direction as 6a. These signs apply
to figure 14 : they are reversed for figure 15.

28. Prop. The orthogmial pryecdon of any line on
another is the product of Ihe u ejected line and the cosine of
ike angle between them.

The angle l^ween two lines not in the same plane is the

between one of them and a lii^ intersecting it and pwi^l to the other.

Let AB be any finite line, PQ the line on whfcli it

is projected, a the angle between them.
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Draw Aa perpendicular to PQ, and let Bb'b be a plane
thrdugh B perpendicular to PQ, cutting the latter in b.

Draw AV parallel to ah. Then AV ’s at right angles

to the plane Bb% the angle AVB is a right angle, and
BAU = a. Since Aa, Vb are both perpendicular to ab, and
are in the same plane, they are parallel, and Ab'ba is a
parallelogram

;
hence ab =AV =AB cos a.

Observe that a is the angle between AB, and a line drawn from A
parallel to PQ in the direction in which the projections are estimated*

positively. If a is an obtuse angle, the projection is negative. The
angle which BA makes with PQ is two right angles greater than that

which AB makes with it.

29, Prop. The algebraical sum of the projections of
the two straight lines AB, BC on any straight line is equal

to the projection 0/AC on the same line.

Draw Aa, Bb, Cc at right angles to the given straight

line then

projection ofAB= ab (positive)^

BC—bq (negative),

f A <7 as oc (positive),

and ab’-bc—ac,
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therefore the algebraical sum of the projeotious of AB^
BG» the projecuon ot AC. •

The above signs refer to the figure given ; the student can convince

himself of the generality of the truth of this proposition by drawing

different figures.

Cor. The algebraical euvC of the projections of the lines

AB, BC, CD, DE, EF, FQ
{fg. 6), drawn end to end, and

measured all the same way round, on any line is equal to

the projection of the line AG.

For the algebraical sum of the projections of AB, BC
= the projection of AC,

that of projections of AC, CZ) = projection of AD,
AD,DE^.... r AE,

AE,EF- “AF,

AF.FO = AG,

therefore the algebraical sum of the projections of AB,
BC, CD, DE, EF, FO = the projection of AO.

The same holds for any number of such linest»

30. It follows at once fi )m the figure, or from the

expressions for the resolved part of a force in any direc-

tion, and the*' projection of a line on a straight line, that

the orthogonal projection of the line representing a force,

on any straight line, represents in every respect the resofyed

part of the force in the corresponding direction.
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Prop. The algebraical mm of the resghed parte in

amg direction of a number of forces acting on a pariAdSt

is equal to the resolved part of their resultant in that

direction.

This proposition follows at onpe from the last, for if

(fig. 6) AB, BC, CD,...FQ represent the forces, AQ re-

presents their resultant
;
and the algebraical sum of *the

projections on any straight line, of AB, BG, ... FG, which
projections represent the resolved parts of the forces in

the corresponding direction, is equal to the projection of

AG, which represents the resolved part of the resultant.

31. We can now obtain expressions for the magnitude

"

and direction of the resultant of a number of given forces

acting on a particle.

First, let the directions* of the forces all lie in me
plane.

v
«

Let Pj, P^. . , be the forces, whose directions make angles

a^, a„ &c., with the line Qx in the plane of the forces ;

let by be a line at right angles to Ox in the same plane.

Let R be the resultant of the forces and 0 the angle its

direction makes with Ox.

Then from the proposition just proved

• Pj cos a, cos ... =P cos 6,

and PjSin aj + P, sin + ,..^R sin 6

therefore, P* = cos a)]* + [S(P sin a)]*,

A ^ a S[Psina]
and tan^=:^Jro

^ 2 [P cos a]

'32*. Secondly, when the directions of the forces are

not necessarily in one plane.

Let P^, P^, P
3, &c. be the forceii whose directions make

with three straight lines Ox, Oy, Oz mutually at right

angles, angles or,, 7i» respectively.
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Let B be the resultant of these forced, a, y the

liagles its directions make with Ox, Oy, Oz, respectivelj.

Then
P, cos Oj + P, cos a, + ... = JJ cos a,

P,cos/8j + P,cos/8,+ ... =Pcos/5,

P,C087
,
4-P,co87,+ ••• =Pcos 7,

^ i?= [2(P cos a)]*+ [2(P cos /9)]* + [2(P cos 7)]*,

_ 2 (P cos a)
“ “ ^^(pcSi^)]*T[2(p^w+ [2(P cos7)i*I

’

with symmetrical expressions for cos and cos 7.

Conditions of Equilibrium.

83. If the resultant of a number of forces acting on
a particle be zero, its resolved part in any direction is

zero also
;
hence /

If a system of forces be in equilibrium^ the algebraical

sum of their resolvedparts in anjy direction is zero.

Conversely, if the algebraical sum of the resolved parts

of a number of forces in any direction bo zero, the resolved

part of their resultant in that direction,must be zero also,

i e. the resultant is either zero or acts perpendicularly to

that direction. But as a line canKot be perpendicular to

each of two directions in the same plane as itself, or to each

of three directions not all in the same plane, the resolved

part of a force, which is not zero, cannot be zero in two

directions in its own plane, or in three directions not all

in the same plane. Hence

A system of coplanar forces acting on a particle is in

equilibrium, provided the algeh uical sums of their resolved

parts in two directions in the plane are zero. Atso if ihe

forces are in (me plane, they are in equiliJmum,

provided the algebraical sums of their resolved parts in

three directions not in the same plane, are severcdly fferoi

These eonditiona Lave been direotly dednoed from the condition that
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the resultant sheuld be zero: in practice they are often found to be

easi^ of expression than the geometrical one.

Ex. 1. ABCD is a square. A force of 3 lbs. acts along AB^ one of

4 lbs. along AC, and one of 6 lbs. along AD; find the magnitude and

direction of their resultant.

Ana, + 32 making with AB an angle tan“i (7 - 4<y2).

Ex.* 2. Three forces act on a particle in one plane : they are 1 lb.,

5 lbs., and 3 lbs. respectively, and the force of 5 lbs. is inclined at an angle

of 30<^ to each of the others : find their resultant.

Ana, \/(3S+ 20i^3) lbs., making with the direction of the force of 5 lbs.

an angle cot'~^ (5 +2iiy3) on the side of the force of 3 lbs.

Ex. 3. At the point O the intersection of the diagonals of a square

ABCD, act forces of 2 lbs. along OA, 4 lbs. along OB, 3 lbs. parallel to

CD, and 1 lb. parallel to DA

:

find their resultant.

Am. lbs., making with CD an angle tan-^f(9+ 10J^).

Ex. 4. Three forces P, P and act on a particle in directions

mutually at right angles : determine the magnitude of the resultant and

the angles between its direction,and Inat of each component.

Am. 2P, making with either force P an angle of and with P^/2

an angle of 45^

Ex. 5. A particle is placed at the comer of a rube, and is acted on

by forces of 1, 2 and 3 lbs. respectively, along the diagonals of the faces

of the cube, which meet at the particle : determine the magnitude of the

resultant.
,

Am, 5 lbs.

S4j. Def. The moment of a force about any point is

measured by the product of the force, into the length of

the perpendicular from the point on the line of action of

the force.

(The line of action of a force is a line, drawn through

the partible on which the force acts, in the direction of

the force.)
,

•

Let JP be a force acting on a particle situate at A,
and 0 be any point : draw OM perpendicular to P’s line

of action, then P x OM measures the moment of P about
0. The magnitude of the moment of P is clearly inde-

pentbnt of^uie position of A, provided the line of action

ren&ain the same.
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It is convenient to make the convention that if* the

Fig 18

force tends to move the particle round 0 in the same
direction ai§ the hands of a watch, when looked at from
above, the moment is of one sign, when in the opposite

ilirection, of the other sign. The latter is generally taken
as the positive moment. In the above figure the moment
is positive.

The moment of a force is zero, when the force itself is

zero, or when its line of action passes through the point

about which the moments a^’e estimated, and in these two
cases only.

The student is recommended to accept the above definition of the

moment of a force, and to foUow the theorems concerning it, without

troubling hims^f at first to learn the physical meaning of the term.

35. Prop. The moment of a force about a given

point is algebraically equal to the moment pf its resolved

part at right angles to the Urn joining the point with

the particle, on which theforce acts.

Let P be the 'force acting on the particle at -4, 0
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the^ given point. Draw OM perpendicnlar to P’s line of

action and join OA. Let OJJlf» 6. The resolved part

ofP at right angles to OA is P sin

The moment ofP sin $ about 0 = P sin ^ . OA
‘ =PxOJf

' = moment ofP about0.

It is also evident tha/t these moments are of the same
sign.

^ 36. Prop. The algebraical svm of the momefnts of% number of copUmarfforces, acting on a particle, about

any point %n thdr pldne is equal to the moment of their

resultant about the same point

Let A be the position of the particle, 0 the given
point

The algebraical sum of the moments of the forces about

0 = the algebraical sum of the moments about 0 of their

resolved parts perpendicular to OA
= OA X the algebraical sum of these resolved parts

OA X resolved part of their resultant in this direction

s moment of their resultant about 0.

Cor. If the forces are in equilibrium, it follows that

the alge\/raical sum of their moments about any point in

their plane is zero.
•

37, By means of the last theorem the sufficient

conditions of equilibrium of a system of coplanar forces

acting on a particle, can be put into a different form.

Prop.^ A system of coplanar forces acting on a particle

is in equilibrium, proved the algebraical sum of the

moments about each of two points in ihe plane but not

in n straight line with the particle, be zero.

Vox the algebraical sum of tLe moments of the forces

abbut any point in their plane is equal to the moment of

their resultant about the same point : therefore the moment
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of their resoltant about each of the two points is zero, so

that either the resultant is zero, or its line of action passes

through both the points
;
the latter cannot be the case as

the line of action passes through the particle. Hence
the forces are in equilibrium.

38. DeJ: If a force be resolved into*two components
respectively parallel and perpendicular to a given straight

line, the product of the latt^ component into the common
perpendicular to its line or action and the given line, is

called the moment of the force ab(mt the given line.

If the force tend to turn the particle it acts on, in <xm
direction about the given line, the moment receives the
positive sign

;
if in the opposite direction, the moment is

taken to be ne^rative.

Let P be the force acting on a particle at A, CD the

g^ven straight line. Let«Q1)e the resolved part of P at
right angles to CD, 0 the point where CD intersects a
plane through A perpendicular to CD

:

Q’s direction js in

this plane : 'draw Om perpendicular to it.

Then P's moment spoilt CD^Qx OM • •
amoment of Q sJ[>out 0.
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Now OM is perpendicular to GD and Q, and therefore

to tiiie plane parallel to GB containing Q’s line of action,

Le. to the plane PAQ, But since GB is parallel to this

plane, all points in GB are at the same distance (OM)
irom it; and Q is the same wherever A is in the same line

of action
;
therefore the moment of P about GB is inde-

pendent of the position ofA in its line of action.
^

It is obvious that the moment of a*forc6 about a line

is zero, if its line of action and the line are coplanar or if

the force is zero, and in these cases only.

39. Prop. The algebraical sum of the •moments of a
number of forces acting on a particle, about any straight

line is equal to the moment of their resulta/nt about the line.

Let (fig. 20) A be the position of the particle, CB the

given line, and 0 its intersection with the plane through
A perpendicular to it.

The algebraical sum of th«. moments about GB of the
forces

s=the algebraical sum of the moments about O.of their

lesolved parts perpendicular to GB
= the moment about 0 of the resultant of these resolved

parts

= the moijaent about 0 of the resolved part perpen-
* dicular to GB of the resultant of the original

forces

= the m9ment about GB of this resultant.

Cor. Hence if the forces are in equilibrium, the

algebraical sum of their moments about any line is zero,

for if their resultant is zero, its moment about any line

is also zero. •

40. Recapitulation.* We began by shewing from purely

S
eometrical considerations how we can compound the in-

ependent velocities of a moving point, into a single

resultant velocity, by means of the Parallelogram of Vm^
cities. From Newton’s First Law we obtained a general

idea of force as that cause, which, acting on a body, tends
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to alter the state of rest or uniform motion in a straight

line, which is the condition of all bodies not acted on by
force. Newton’s Second Lem defined the direction of a
force, and stated that its magnitude is poportional to the
change of momentum produced by it in any body alter

acting on the latter for a certain time
; fjrom this and the

Par^elogram of Velocities we deduced the fundamental
Proposition in Statics, the Parallelogram of Forces. Then
followed other theorems, the Tuiangle of Forces, the
Polygon of Forces, Lamis theorem, &c., modifications of

the Parallelogram of Forces, which often enable us to

solve Statical Problems more easily than the oiiginal

proposition. Having shewn that the algebraical sum of

the resolved parts in any direction of a number of forces

acting on a particle is equal to the resolved part of their

resultant in that direction, we obtained expressions for

the magnitude iKnd direction of the resultant of a number
of forces. From this and because the sole necessary and
.sufficient condition of equilibrifim of a number of forces

acting on a particle is that their resultant be zero, we
obtained a set of conditions of equilibrium which is often

easily applied to the solution of problems. Another im-
portant set of conditions of equilibrium we deduced from
the proposition that the algebraical sum of the moments
of a number of forces, about any straight line, or in the

case of coplanar forces, about i point, is equal to the

moment of their resultant about the same line, or point.

41. Tension of a String. A yer^ common way of transmitting for^

IS by means of a flexible string, rope or cham. Now when a string AB
is stretched by the appUcation of forces it is a matter of everyday expe-

rience that if it be out at any poll « the two ends on eitUer side of P
separate : what then prevented^ the portion AP from moving before the

*

string was cut? Clearly the force which the other portion BB exerted on

it, and similarly the latter was prevented from moving by the fosoe which

AP exerted oxr fi. But we shall see m Art. 44 that these forces are equal

to one another, and act in apposite directions along the hues joining the

two adjacent particles on either side of P, i.e. along the tangent atP to the

curve formed by the string; if the string is straight, these forces wiU aot
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.
* • *

along it. Eithor of these forces is called the tension at P. If the tensions

at al^ points of the string are the same, we speak in general of the temion

of the string.

There is a limit to the tension which any given string can exert, and

if we try fo transmit a force greater than this by means of the string, it

will break. ^

The above remarks apply to rods also if they are stretched, bnt the

tension becomes a thrust^ if the tendency of the forces on them hf to

compress them.

42*. Extensible Strings. The following experimental law, due to Hooke,

gives the relation between the extension of an extensible string or rod, the

tension along it, and its natural length, i.e. its length when unstretched.

JTor strings of the same material and thickness^ the extension varies as the

tension and the natural length conjointly.

If Z be the natural length, V the length when stretched, t the tension,

we may write the law symbolically,

r-Z a It, c

where X is a constant for the particular string in question.

We assume that the tension of the string is t throughout the whole

length to which we apply the law. For many substances; such as steel,

this law is only true so long as the extension is small compared with the

natural length, but in others, such as india-rubber, the limits within

which it holds artf much wider. It is easily seen that X is the tension,

which, if thq law held whateverthe extension is, would stretch the string

or rod to double its natural length.

X is termed the Modulus of Elasticity for strings of the same material

and thickness.

48. When any body is acted on by force we ascribe this force to some

other body : e.g. we ascribe the force which causes a body to fall to the ,

ground, to tfie earth ; the forces by which the planets are kept in their

orbits we ascribe to the Sun. If we wislfto move any body we must act

on it by means of some other, such as the hand. Now we know by

experience that if we strike a table with the hand the latter is stopped

:

if we throw a half against a wail, it rebounds. Sinccf the hand is

shopped and the ball rebounds, each must l&ve been acted on by foxee,

w&n the hapd acted on ^e table, the table reacted on the hand,

and when the ball acted on the wall, the wall reacted on the ball. These
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llliuttaiion8 shew that wh^ a body A aots on a body X ia acted on
in return by JB* Tbe exact relation between tbe action and the xeaiaMon

is expressed by Newton’s Third Lava, which is

To every action there is an equal and contrary reaction*

All forces then occur in pairs, each pair consisting of equal and
opposite forces, an action %nda reaction. The mutnifl action between two
bodies is tmaed the Stress between them. It is obvious that all forces

are stresBes.

We shall often have to consider the equilibrium of bodies which are

not free to move in any direction, but are constrained by sur&ces, curves,

<fec. with which they are in contact. For instance, suppose a small body
inside a fine tube ; the only possible motion of the body is along th^ tube,

i.e. the tube itself will supply the force necessary to prevent motion in any
other direction : if then the resultant force on the b^y, not including the

force exerted by the tube, be perpendicular to the tube, we know that

the body is in equilibrium. Similarly, if a partid^ be on a plane, and the

resultant force, not including Ihe force exerted by the jjiane, be perpendi-

cular to the plane and towards this force, however great, ynH be

counteracted by the force exerted by the plane and the particle will be in

equilibrium. If, however, the resultant force Is away from the plane, the

particle will move, as the plane cannot exert a force to prevent motion

away from itself.

Smooth planes or tubes are those which can only exert forces perpen-

dicular to themsdves and are the only ones mth which we are concerned

at present. A plane or tube which can o^se the motion of tk particle

along ibself, or in other words, can exert a force not entirely pApendioular

to itself, is termed rougK The same may be said of a curved surface if

we take the tangent plane at the point where the particle touches it, as

the plane considered above.

Such forces as the pressures exerted by surfaces, <bo., and the tensions

^of inextensible strings, are called into play by the actions ofpother forces

which tend to press the body agpinst the surface, or to stretch the string;

the former only act when the lai< if do. Also, if the surface and the

string be supposed strong enough, each is capable of exert^ a tom of

any magnitude,*!! such a force is necessary to preserve equilibrium.

Buch forces are termed Pansive forces, and it is axiomatic that their

magnitudes will always adapt themselves so as to maintain equili)aiutti,

if possible.
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, ILLUSTBATIVE EXAMPLES.

.

Ex. 1. Assuming that the Parallelogram of Forces holds as regards

direotioh, to prove it as regards me.gnitnde.

Let ABt AC represent two forces in magnitude and direction : complete

the parallelogram and jom AD. By hypothesis AD is the direc-

tion of the resultant of the two forces. The force then which will counter-

act these two forces must act in the direction DA
:
produce DA to E so

that AE rq)reBents the magnitude of this last force. The three forces

ABf AC, AE are in equilibrium.
* e

Complete the parallelograi^ ACFE, and join AF. By hypothesis, AF
represents the direction of the resultant of AC and AE ; AF then is in a

straight line with AD ; i.e. is parallel to CD, and ADCF is a parallelo-

gram.
AD:=FC^AE.

Hence AD represents the magnitude of the resultant of the forces

represented ^y AB and AC, since it is equal to AE which represents the ’

force that would counteract them.
^

The converse jiroposition could be proved in a similar way.

Ex. 2. Forees P, Q act at a point 0, and their resultant is it : if any

transversal cut their directions in the points L, M, N respectively, shew
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Through Ndraw Nl parallel to OM, and Nm parallel to OL.

The triangle OIN has its sides paralld to the directions of the forces

P, Q, B respeotively, and if'R be reversed, these forces are in equilibrium

;

hence (Art. 16) each side is proportional to the force to whose direction it

is parallel, i.e. Ol=fiP, IN^fiQ, ON=fjLlt, •

.
P 0 _ 1

• OZ \OL OJ//

^1/^ JLV 1

/*\OL*^OL/ fi

R
ON*

This result is obtained directly by expressing the fact that the sum of

the resolved parts of P and Q perpendicular to LNM is equal to the

resolved part of JR.

Ex. 3. Shew that the resultant of three forces acting on a particle

and represented by AP, PP, PC, where P is the orthocentre of a triflmgle

ABC, is represented in magnitude and direction by the diameter of Ihe

circle ABC, which passes through A.

Draw AR'the diameter ofthjC Circle ARC: join PH, CLT : then the angle

APH is a right angle. By the tnangle of forces the resultant of AP,

PB is repres^Ddbed by AB, since the forces AP, PP, PA acting on a

partible would maintain eq^librium.

We have then to prove that AH is the resultant of AP and PC,

f But by the triangle of forces, AH is the resultant of AP and PH;
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l)enoe the problem reduces to the g^metrical one of proving that PC is

• rig.2a

equal and parallel to J3II, Since they are both at right angles to AJS

they arc parallel.

For a similar reason, BP and Off are parallel.

PBHC is a parallelogram.

.-. PC^HB.
Fx. 4. Two forces act alo^ the sides CAy CB of a triangle ABCy

their magnitudes being proportional to cos A, cos B. Prove that their

resultant is proportional to sm C, and that its direction divides the angle

(7 into two parts, A), J(C+A -P).

Let it cos A, ft cos B be the forces, B their resultant, $ the angle its

direction mokes with CA.
©
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« If B were reTersed, the three forces would be in eqtnilibritun (Art, 14),

•

and then each force would be proportional to the sine of the au^e
between the other (Art. 18).

R:kQOBA:h cos Bssin C : sin {0- $) lainB.

8m(C~d) _ cos A
*

*

^
iind 008 B '

RolvxAg for $ we obtain cot d—tan B,

.•.$=^-B=\(A + C-i),

and

and J2= k COB B sin C
Bin e

=sk Bin C.

. Ez. 5. Three forces P, Q, i? in one plane, act on a particle, the

angles between It and 0, P and P, and P and Q being a, p, and y
respectively :

prove that their resultant

= + 2QR COB a+2PP cos /8+2PQ cos 7}*.

Let Xi, Yi be the resolved parts of P in two directions at right angles

to one*another, Ag, and tnose of Q and R respeotively in the

same directions, ^en (Art. 31) the resultant

= (5^1+ Y2+W-
But (Xi+ Xa)*+ ( Fj+ Fa)3= (resultant of P, Q)*

=I^+Q*+2PQ cos 7.

SimUarly (X,+X8)3+(ra+ F8)»=Q*+P®+2PQ cos a

and (X,+Xi)«+(F8+yi)'*=J^+|{*+2PPcos/3.

adding

(Xi+Xa+X8)*+(ri+ra+F8)’'+-^^i"+V+V+i'2*+V+^^^
=2 (P*+Q*4-P*+PQ cos 7+PP cos fi-hQB cos a),

.. (Xi+X8+X8)»+(ri+y8+F8)*

=P*+Q®+P*+2PQ cos 7+2QP cos a+2PP cos

•.•2»=Xi>+yi‘*, <?'=X3* + Fa*. P**X8*+V:*

whence the required result. "
.

The same result can be obtained by resolving in three directions

mutually at rig^t*angles, when P, Q, P are not in one plane.

Ex. 6. Forces act throai^h the angular points of a trian^e perpec-
^

dioular to the opposite sides, and are measured by the cosines of iheborre-

spending angles ; shew that their resultant is J{1 - 8 cos !d oos P cos C).
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« We obtain the resultant by substituting in the last example

c ooBA for P, COB B for Q, cos CTor 22,

A for a, ir -B for p, and t - C7 for 7.

the square of the resultant= cos^A + cos*B+ cos* G
~ 2 cos ^ cos 22 cos C - 2 cos B cos C 008 A - 2 cos C cosB cos A
=l-smV + cos*B+ cos* C-

6

cos A cosB cos C
= 1 + cos (A - B) cos (A + B) + cos* C - 6 cosA cos B cos C
= 1 - cos C {cos (A - B) + cos (A +B)} - 6 cos A cosB cos C
= 1 - 8 cos A cos B cos C.

Ex. 7. Prove that the resultant of forces 7, 1, 1, and 8 acting from

one angle of a regular pentagon towards the other angles, taken in order,

is^Ti.

Let ABODE be the pentagon, AB, AC, AB, AE the lines along whidr

the forces 7, 1, 1, and 8 respectively act. Draw AF at right angles to DC.

The angles BAF, EAF each =54®, the angles CAF, DAF each =18®.

Fig.26

iBesolve the fmroes in directions AF, FC,
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Xp the algebraioaf Burn of revived parts in direction AF
« (7+ 3) 008 64®+ (1+ 1) 008 is® as 10 oq8 64®+ 2 oos 18®

^

=J {M10-2>/8)+n/(10+2v^)>.

r, the algebraical sum of resolved parts in direction FC
= (7-3) sin 64®4-(1-1) sin 18®=4 sin 64®= V6+ 1.

Whence the resultant, iy{(X^+ IT®)= ’

The student has sometimes a difficulty in choosing the lines along

which he should resolve the forces, since all*direotions are open to him
for that purpose: it is very important that he should select them
judiciously, in order that the work may be simplified. The directions

selected in the above example were chosen because they were

metrically placed as regards the forces.

• Ex. 8. Prove that if O be the centre of the circumscribing circle, and
0' the centre of perpendiculars of a triangle ABC, the resultant of forces

represented by OA, OB, OC is represented by 00'.

By Art. 22, we shall prove the required result, by proving that the

centroid of if , 0 is in 00', at a distance from 0, i that of 0' from 0.

Draw OJ), AO'
D*

perpendicular to BC: join AD, cutting 00' in P.

Now
ODssB cos A, and AO'=AE' sec D'AC=AB cosec C cos A='2J{ cos A,

where JR is the radius of the circle ABC.

A0'=20D and '“.'P?=20P, and ifP=2Pi>.

Hence P is ^Ije centroid of AhC, and OP^lOO'.

Ex. 9. A given numberaof forces acting on a particle are represented

in magnitude and direction by stzaight lines drawn from the focus of

a conic to the curve ; shew that if the sum of the forces be constant^ the*
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loeus of the extremity of the line zepresenting the resultant is a straight

line.

Let 8 be the focus ; let SP^ SQ be n straight lines drawn from 8
to the conic so that iSfP+5Q + ...=a constant.

Draw PMt QN^ Ac. perpendicular to the directrix corresponding to S ;

thdn since SP=:ePN, SQ=seQN, Ac.,

PM+ QN+ Ac. = a constant.

Let 0 be the centroid of P, Q, Ac., then (Art. 21) the distance of O

from the directrix— =a constant.
n

Hence 0 lies on a straight line parallel to the directrix, and the end

Flg.27

of the line representing the resultant lies on another line parallel to this,

but n times its distance from the focus.

Ex. 10. ( Forces P, <J, B. act from the angular points of a triangle

APCf perpendicular to the opposite sides
:
prove that if their resultant

pass through the centre of the circumscribing circle,

'

P(cco8P-b 008 Cf) + Q{aooB C - e cobA)±R {h cos A - aooBB)ssO^

Let 0 be the orthocentre, O' the centre of the circumscribing ohrole.

Let Jp, E, P be the feet of the perpendiculars from 0 on the sides of

the trian^; jy, E', F the feetof the perpendiculars from O' on the same.
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the zesaltant of P, Q, R paaseB through O', its momeat about

O' ifi I.
‘

,

/. the algebraical sum of the moments of P, Q, R about 0' is zero

(Art. 87).

.‘.^P. DD'+ Q . PJS' - P. PP'=0,

/. P(c 008 P-ia)-f Q(acosC- J6)-P{flC08P~ic)3aO;

P (c cosP - 6 cos C)+ Q{a cos C - c co%A) (6 cos A - a cos P) -0.

In the ab^ve figure we see that the forces P and Q tend to move a

particle situate at 0 in the opposite way round O' to that in which R
would move it : their moments therefore are of the opposite sign to that

ofP.

The student may verify for himself that the same result would be

obtained were the figure diWent. He should specially nptice in the above

example that the required result was obtained by expressing that the

algebraical sum of the moments about O' was zero, 0' being on the line of

action of the resultant.

Ex. 11. A particle of weight W is supported on a smooth inclined

plane by means of two strings of given lengths, which are attached to the

particle C and to fixed points A, P in a horizontal line in the plane and

at a given distance apart. * It is required to find the tensions oftSbo strings.
•

The sides of the triangle ABff being known, the angles which AO, PO
make with the horizontal lin%A/ mre known: let d, ^ be theiAsomple-

ments" Let a be^e 'molination of the plane to the horizon. Draw 0Z>

neipendioular to AP. «

The particle is in equilibrium under the action of four forces, its weighl

W which acts vertically downwards, the tension T of the string AO, T\
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tUat of BO^ and the pressure of the inclined plane R, which acts at right

angles to the plane.

We shall apply the conditions of equilibrium obtained in Art. 33.

Since the algebraical sum of the resolved pai^cs of the forces in any

direction is zero, those in the directions AB and CD must be zero.

/. r sin^'-rbin^=rO (i),

r cos d + T' cos e'-W sin a=0 (ii).

R occurs in neither equation, because its direction is perpendicular

to all lines in the inclined plane, and W does not occur in the first,

because its direction is perpendicular to AB. The inclination of CD to

the vertical is the same as that of the plane, and is therefore ~ - a, so
• a

that the resolved part of Tr*jdong CD is - W sin a.

From ({) and (ii) we obtain

TFsin^^j^a —__Trsin(?8ina
~ sin(^+^')

’

R can be obtained by equating to zero the sum of the resolved parts

in the direction perpendicular to the plane, we have then

D-Trcosa=0, •

or l?=;Trcostt.
,

The advantages derived from resolving in the particular directions

ifitosen above, are obvious. \



STATICS OP A SINGLE PARTICLE.
'

49

Examples on Chapter I.

1. ABC is a triangle \ D^E^F are the middle points of tlie sides RC,
CA, AB respectively : shew that forces acting on a particle and represenM
by the straight lines AD, BE, OF will maintain equilibrium.

•

2. A, B, C are three points on the circumference of a circle : forces

act qlong AB and BG inversely proportional to these straight lines in

magnitude ; shew that their resultant acts along the tangent at B.

3. Two forces P and Q have a resultant B which makes an angle a

with P : if P be increased by B, while Q remains unchanged, shew that

the new resultant makes an angle with P.

4. The resultant of two forces P, Q, acting at an angle $ is equal to

(2111+ 1)^1^(1^+^^): when they act at an angle it is equal to

(2m - 1) + <2*) : shew that tan d = (m - 1) / (m+ 1).

6.

Compare in terms of the sides of a triangle ABC the forces which

acting from 0, the ceiftre of the inscribed circle, along OA, OB, OC will

balance. «

6. Two forces P and P act on a particle lying on a smooth hori-

zontal plane. If P makes an angle of 45^ with the horizon, find the

direction of P in order that the particle may be in equilibrium.

7. Find within a quadrilateral a point, such that if it be acted on by

forces represented by the lines joining it to the angular points of the

quadrilateral, it will be in equilibrium.
,

8. ABC is a triangle, P any point in 4iC, If PQ represent the

resultant of the forces represented by AP, PB, PC, the locus* of ^ is a

straight line parallel to BC.

9.

A heavy particle is attached to one end of a string, the other end

of which is fixed. Find the fordie making an angle of 30® with the hori-

zontal which must be applied to the particle in order that the string may
deviate by an angle of 46®.from the vertical, and find also th^ tension of

the string. *

10. Two forces P, Q act at a pomt 0 along two straight lines

an angle a with 4wh other, and have a resultant P : two other foro^

P', Q' acting along the same two lines have a resultant B'; shew that the

directions ofB and B' will also include an angle a if
*

PF+QQ'+QPQ' coBa^O, orPPf+ QQ' + 2P'Q eosa=0.

G. 4
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11. If from Of the centre of the circle inscribed in the triangle ABC^
forces X cos X 008\B act along OB, OA, prove that themagnitnde of the

necessary force towards 0, in order that the resultant may pass through

the middle point of AB, is X cot JO.

12. A small ring slides on a smooth arc of a circle and rests in equi-

librium under the lepulsion of three forces P, Q, B, directed from points

dividing the circumference into three equal parts: if its position of equili-

brium lie on the smaller arc between the points from which the forces Q,

B are directed, shew that the pressure exerted by the circle is

{t»+<)fi+IP-QR+RP+PQ]k

13. Two particles of weights P and Q respectively, are connected by

a string which lies on a smooth circle fixed in a vertical plane : shew that

if be the angle subtended at the centre by the string, the inclination of

the chord joining P, Q to the hoiizontal in the position of equilibrium is

tan-i {P^Q)I{P+Q).

14. OA, OB, 0(7 .. are any number of fixed straight lines drawn from

a point 0, and spheres are described on OA, OB, OC as diameters.* Any
straight line O.Y is drawn through 0 and a point P taken on it so that

OP is equal to the algebraical sum of the lengths intercepted on OX by

the spheres. Find the locus of P.

15. Two constant equal forces act at the centre of. an ellipse parallel

to the directions SP and PH, where S and II are the foci and P is any

point on the curve. Shew that the extremity of the line which represents

their resultant lies on a circle.

16. Forces are represefited by the perpendiculars from the angles of

a triangle ABC on the opposite sides : shew that if their resultant passes

through the centre of the nine-point circle, the triangle must be

isosceles.

17. Three equal forces act at the orthocentre of a triangle ABC,

each perpendicular to the opposite side
!
prove that if the magnitude of

each force Le represented by the radius of the circle ABC, the magnitude

of thd resultant will be represented by the distance between the centres of

the inscribed and circumscribed circles.

18. The resultant B of any number of forces P^, ^ deter-

mined in magnitude by the equation

" B*=S(P2) + 2SP,P,oos (P,PJ,

where (P^P*) denotes thean^e between the directions of P„ P#.
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19. •ABCDEF is a regular hexagon, and at A forces act represented

in magnitude and direction by AB, 2AC, SAD, 4AE, 6AF; shew thatdbe

length of the line representing their resultant is .AB.

20. Twp small smooth rings of weights W and W\ connected by a
string, slide upon two fixed wires, the former of which is vertical, and the

other inclined at an angle a to the horizon. A wei^t P is tied to the

string, prove that in the poSition of equilibrium

• cot ^ : cot 0 : cot a=1V:P+W : P+ W^+ TT,

where 0 are the angles which the two portions of the string make with

the vertical.

21. ABCD, A'B'CE* are two parallelograms; prove that forces acting

at a point proportional to and in the same direction as A A', B'B,

D'D, will be in equilibrium.

22. A particle is acted upon by a number of centres of force, some of

which attract and some repel, the force being in all cases proportional to

the distance, and the intensities for different centres being different : shew

that the resultant foro^passes through a fixed point for all positions of.

the particle, and examine the one app'trent exception.

28. From .any point within a regular polygon perpendiculars aie

drawn on all the sides : shew that the direction of the resultant of all the

forces represented by these perpendiculars passes through the centre of

the polygon, and find its magnitude.

24. Two heavy rings slide on a wire in the shape of an ellipse

whose major axis is vertical, and are connected by a str^g which passes

over a smooth peg at the upper focus: shew that if the weights are equal

and the length of the string is equal to that of the axis majo^ there are

an infinite number of positions of equilibrium.

25. Four particles A, B, C, D are attached to the ends of strings

whose other ends are tied in a knot at 0. Any two particles repel one

another with a force which varies directly as the distance and the product

of their masses.' Shew that when the system is in equilij^rium, the

volumes of the tetrahedra OB(7i>, QCDAt ODAB^ OABC are proportional

to the masses of A, B, C, JD re8|K ^ \ ^'sely.

26. In an ellipse a polygon PQBS, &o. is described so that the

triangles formed ^th a side as base and the centre of the dlipse as

vertex are of equal area. If G be any point in the plane of the ellipfs^f

prove that the line of action of the resultant of the forces represented hj
OP, OQ, OR^ Ac, passes through the centre of&e dlipse.

4—2
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27. Two small heavy rings slide on a smooth wire, in the shape of a

paifthola, whose axis is horizontal : they are connected by a light string

which passes over a smooth peg at the focus : shew that in the position

of equilibrium, their depths below the axis are proportional to their

weights.

28. Forces P,1^, H act in the lines DA, DB, DC and their resultant

meets the plane ABC in G, shew that

PIAD : QIBD : R/CD :: ABGC : AGGA : AAGB.

If their resultant be parallel to the plane ABC, then

P,DB,DC+ Q,DC ,DA +R.DA,DB=0,

20. 0 is any point on the circle circumscribing a triangle ABC, and

OL, OM, ON are the perpendiculars from 0 on the sides. The line

LMN meets the perpendiculars from A, B, C on the opposite sides in

P, Q, R respectively. Prove that if forces act at O represented by OL,

OM, ON, OP, OQ, OR their resultant is represented by 30K, where K is

the orthocentre. ^

30. ABC is a triangle and are the centres of the three

escribed circles opposite to A, B, C respectively. At any point P,

forces act along POj, POg, POj represented in magnitude by POj . BC,
PO^^CA, PO3.AP, respectively. Shew that if their resultant is of

constant magnitude, the locus of P is a circle concentric with the circle

circumscribing the triangle O-^Ofiy

31. A weight attached by a cord to a fixed point 0, rests against a

frictionless ctirvu in the same vertical plane with O : shew that (1) if the

pressure on the curve is to He independent of the position of the weight on

it, the curve must be a circle
: (2) if the tension in the cord is to be

independent of the position of the weight, the curve must be a conic

section with 0 as focus.

32. Two equal particles are connected by^a fine string, the partides

and string being in a fine smooth elliptic tube, whose semi-circumference

is equal toHhe length of the string. The particles are acted on by con-

stant repulsive forces from one focus
;
prove that, if these forces are equal,

fhe particles will be in equilibrium in any position in which the string is

tight, and if they are unequal, in only one such position.



' CHAPTER 11.

STATICS OF SYSTEMS OF PARTICLES.

44. When a body composed of a number of particles*

is in equilibrium, each of these particles is in equilibrium

also, and the force? which act on it must therefore satisfy

the conditions of^ equilibrium. But among the forces

acting on a particle must be included, not only what are

called External forces, such as the force of gravity, the

pressure a»id tensions due to other bodies, but also In-

ternal forces, i.e. the forces of attraction and repulsion

that exist among the different particles composing the

body. These forces are by no means always the same in

the same body; for example, it is plain that if we try

to stretch a rod, the forces that the dififeyent particles

composing the rod, exert one oi\* another, are different

from what they are when we try to compress it? In the

former case, the external forces tend to separate particles

arranged along a line parallel to the rod^s length, in the

latter they tend to move them nearer together. To
resist these quite opposite tendencies, different^intemal

forces must be called into play. Concerning •these in-

ternal forces we know hyk Newton’s Third Law that if

the particle A exerts on the particle B a force JB, (the

action) in a certain direction, it is itself acted on b^ a
force i?, (the reaction) in the exactly opposite direction,

and also in the same straight line, so tnat the line^cf

action of each of these forces must be the line joining A
and JB.



STATICS.

« Kecessary Gmditiom of Equilibrium for my body,

45. Without any further assumption about the in-

ternal forces that are exerted when any body is in equili-

brium, we can determine conditiohs which must be satisfied

by the external forces in such a case*.

Since the algebraical sum of the resolved parts in any
direction of the forces, which act on each particle of a
body in equilibrium, is zero, that of the resolved parts

in any directildn of all the forces, external and internal,

acting on all the particles, is zero also. But as the re-

• solved part of any action is numerically equal, but of

opposite sign, to that of the corresponding reaction, the

algebraical sum of the resolved parts in any direction of

all the internal forces vanishes separately, for the internal

forces consist entirely of pairs of forces, equal and* opposite

„to one another. Hence the algebraical sum of the re-

solved parts of the remaining forces, the external ones, is

zero.

Cor, A system of forces keeping a number of particles

in equilibrium will, if applied to a single particle, keep
it in equilibrium, since the conditions of Art. 33 are

satisfied.
*

'i' 46. in a similar ’way we can shew that the alge-

braical sum of the moments about any line^ of the external

‘forces acting on a body in equilibrium, is zero. We have
only to substitute * moments about any line

*

for * resolved

parts in any direction ' and the above proof holds.

We ^y state then that

If any body be in equilibrium under the action of
external and internalforces, the algebraical sums both of the

resolved parts in any direction, and of the inxyments about

any line, of the external forces, are zero.

If the lines of action of the external forces be in one

plane, the algebraical sum of their moments abguit any



STATICS OF SYSTEMS OF PARTICLlfe. .

»

% 4 *
^

point in that plane is zero, being equal to the algebna^ ^

sum of their moments about a line through the point* in

question, and perpendicular to the plane.

47. It is to be noticed that what we have called

internal forces are only so relatively—the fdrce which is ex-

ertgd on the particle* A by the particle B is an internal

one, when we are considering a body or system of bodies con-

taining both particles, whereas if J? is contained in

the system, the force is an eorternal one. It is then very

necessary, in applying the above coriditionSifof equilibrium

to a system oi particles, to know which forces are external

and which internal. The force which is an internal one
when we are considering the whole body may become an
external one, when only a portion of the body is under
consideration.

^

Ex. 1. A picture weighing 10 lbs. is supported by a string which

passes over a smooth peg, and has its two ends fastened to the picture

if the tensioi? of the string be 10 lbs., shew that each string makes an

angle of 60® with the vertical.

Apply Art. 45, choosing the vertical and horizontal as the directions

along which to resolve.

Ex. 2. A rod is supported by means of two strings which arb

attached to a fixed point, and one to each end of the rod. Assuming

that the weight of the rod acts at its mfildle point, prove that the^

tensions of the strings are proportional to their lengths. '

^

Apply Art. 46, taking moments about the middle point of the rod.
^ *

Ex. 3. A rod of weight IF, is supported at an angle of 60® with the

horizon by means of strings attached to its ends, the one attached to

the upper end making an angle of 60® with the horizon, but in^ opposite
'

direction to the rod : find the tensions of the two strings andl^e inolma-

tion of the second to tlie horiroji, assuming that the weight of the rod

acts at its middle point.

Aru, IW the latter acting at an an^e tan~^ 8 to the

horizon.

Apply Arts. 45, 46, choosing an end of the rod as the,point about

which to take moments, and the horizontal and vertical as the directions

in which to resolve.
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Ex. 4. A square ABCD^ is in equilibrium under the action of four

forces, one of 3 lbs. acting along AB, one of 2 lbs. along BC, and one of

3 lbs. along CD ; find the magnitude and line qf action of the remaining

force.

Ana, A force of 2 lbs., acting in direction CB, at a distance equal to

iAB from BC. «

Apply Arts. 46, 46, resolving along AB, hC respectively, and taking

moments about B.

Ex. 5. AB is a straight weightless rod, 15 feet long ; 4 lbs. is hung at

A, 1 lb. at a point 3 feet from A^ and a force of 11 lbs. acts vertically

upwards at a point 8 feet from B ; find what weight must be attached to

the rod to maintain equilibrium, and where it must be placed.

Ana. 6 lbs., 2 ft. 8 inches from B.

Ex. 6. Three forces acting at the comers of a triangle, each per-

pendicular to the opposite side, keep the triangle in equilibrium : prove

that each force is proportional to the side to which^ it is perpendicular.

Take moments about two of the angular points.

Ex. 7. If three forces P, Q, P, acting along the bisectors of the

angles of a triangle, at the angular points A^ P, C, respectively, keep the

triangle in equilibrium
:
prove that

P : Q '. i2=cos 4.4 : cos ^B : cos JC.

Take moments about two of the angular points.

48. have (Art 45) found necessary conditions of

equilibrium for any body or system’ of bodies whatsoever,

including liquids, flexible strings, &c.

We shall hereafter (Arts. 52, 54 and 55) find sufficient

conditions of equilibrium for rigid bodies.

Def. ^When the particles which compose a body,

always form the same configuration, or in other words,

when the body always retains the same shape and size,

whatever forces be applied to it, the body ds said to be
; rigid.

*We have no experience of bodies, which answer this

description petfectly, but we know of many substances
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which answer it more or less approximately : i.e. we know
of many substances, which will submit to the action* of

considerable forces without undergoing any appreciable

change in shape or size. The results which we shall prove

absolutely true for perfectly rigid bodies, will be so approad-

mately for bodies thaj are approximately rigid.

^9. We have already seen that any system of forces

acting on a particle is equivalent to a single force, i.e.

there is a single force, such that its effect on the particle

could not be distinguished from that of .the combined
forces. The question now presents itself, w'hether this is

so or not when the forces do not all act on a single particle,

but on different particles of a system. If the particles form

a rigid body, we shall see that under certain circumstances

there exists a force, which together with the given forces

would keep the bftdy in equilibrium, so that the effect of

this force reversed on the body as a whole, is the same as

that of the original forces. But •it must be remembered
that it is only on the body as a whole that the effects are the

same necessarily : the internal forces called into play by the

single force, are not necessarily the same as those called

into play by the system of forces, in fact are generally very

different. When we cannot find a single force whose effect

on the body as a whole is the same as that of the system of

forces, we can always find a different*system of forpes whose
effect will be the same, though they will not generally give

rise to the same internal forces. It is usual to speax ofr

the single foice, when such a one exists, as the resultant of

the original forces, and the second set of forces as equiva-

lent to the first, though it must always be undersjkood that

they are so, strictly speaking, only in one senSe, Even
when the body is not rif • a single force, or set of forces,

which would, if the body were rigid, be equivalent in the

above sense is said to be, one the resultant of, the other

equivalent to, the original system of forces.

60. Prop. Any rigid body^ under the action of any
system offorces^ can he fixed by applying singleforces of the
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reauisite magnitude at each ofany three given points of the

body not in the same straight line, the direction of theforce

at one point being at right angles to theplane containing the

three points, and that of theforce at a second point at right

angles to the line joining it to the third.

Let A, B and C be any threa points of the body^

The body can be ftxed by the following constraints:

imagine a very small spherical socket tp be made in the

body at A, and a ball just smaller than the socket to be
placed in it, and the ball to be fixed. Now imagine a very

small hoop with its plane perpendicular to AB, to be fixed

round B, and also some obstacle to be placed to prevent

0 from moving at right angles to the plane ABC, The
first constraint prevents the body from moving in any
way except by turning about A, and exerts a single force

through A as the ball and socket touchiin only one point

:

the second prevents B from turning about A, and there-

fore from moving at all, so that the body can now only turn

about AB; the second force acts at right angles to AB.
The third constraint prevents C from moving round AB,
and therefore from moving at all, and exerts a single force

through C at right angles to the plane ABC. As C cannot

turn about AB, it is clear that the body is now fixed.

51. Thil^ proposition can be extended to the case in

which any of the point's A, B, and C are not situate in the

body. For we may imagine them to be made so in effect,

without introducing any forces external to the whole
system, by arranging a system of rigid rods, without weight,

ngidly connecting tlfem with the body.

Cor. ^ Ifike lines of action of the external forces all lie

in one plane, the body can he fixed by the application of
singleforces at any two given points A, Bin that plane, each

force oeing in the plane, and the direction of one being at

right angles to the line AB. *

* For by the last proposition, if a third point C be taken

in the plane but not in AB, the body can be fixed by the

ajpplication of suitable forces P, Q, iJ* at A, B,0 respec-
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lively, the direction of R being pe^ndicular to the plane,

and that of Q perpendicular to AA The. body is now*in
equilibrium under the action of the internal forces, the

original external forces, and the forces of constraint P, Q,
R. Hence (Art. 46) the algebraical sum qf the moments
about AB of all the external forces, including P, Q, and R,
IS aero : but each of these moments except that of R is

zero, since each of the corresponding forces either intersects

AB or is parallel to it. The momdnt of R must therefore

be zero, i.e. R itself is zero, since R neither meets AB
nor is parallel to it. Similarly we may shew that the

moment of Q about every line through A in the plane is

zero, i.e. Q is either zero, or lies in the plane in question.

Also by taking moments about lines through B in the

plane, except AB, we may shew that either P is zero, or it

lies in the plane. 4

52. Prop. A number offorces acting on a rigid body,

their lines cf action all being in the same plane, will keep

it in equilibrium, provided any of thefollowing sets of con-

ditions hold

:

(1) If the algebraical sum of their moments about each

of three given points in the plane, but not in the same
straight line, be zero,

(2) If the algebraical sum of* their momey/ts about

one given point in the plane, and of their resolved parts in

any two given directions in the plane, be zero.

(3) If the algebraical sum of their moments about two

given paints in the plane, and of their resolved parts in any

given direction in the plane, not at right angles to the line

joining the two points, be zero.

(1) Let A, B, C he he three riven points: if the

body is not ig equilibrium, it can be fixed by applying

forces of constraint P and Q at A and B respectively,

both in the plane of the forces and Q perpendicular to AB
(Art. 61). The whole system of forces including P and Q
must satisfy the necessary conditions of equilibrium:
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therefore the algebraical sum of their moments about

A*^is zero: but the algebraical sum of the moments
about A of the forces excluding P and Q is zero, and the

moment ofP about A is zero also
;
hence the moment of

the remaining^ fofce Q is zgro, i.e. Q itself is zero, as it

does not pass through A, Similarly we can shew that

the moments of P about both B and G are zero
;
hpnce

either P is zero, or it passes through both B and 0. As
A, B, and G are not in a straight line, P must be zero.

Hence the body is in equilibrium without any (Constraint.

(2) Let A be the given point, and B any other point

in the plane of the forces; apply forces of constraint P
and Q A and B respeptively as in (1). Then we shew
as before that Q is zero. The forces including P must
satisfy the necessary conditions of equilibrium : therefore

the algebraical sum of their resolved parts in each of the

two given directions is zero
;
but the algebraical sum of

the resolved parts of the forces excluding P, in each of

these two directions is zero, i.c. the resolved part of P in

each of these directions is zero. But as the resolved part

of a force is only zero, in a direction perpendicular to the

force, P itself must be zero.

Hence the body is in equilibrium without constraint.

Case (3) ean be proved in a similar way.
•

63. •Prop. Two equal forces acting in opposite direc-

tions along the same straight line on a rigid body, hut not

necessarily on the same particle, keep it in equilibrium.

This is obvious as the two forces clearly satisfy the
sufficient conditions of equilibrium given in the last

article. •

This proposition is essentially the same as the prin-

ciple known as the Transmissihility of Force, which is

generally assumed as an experimental fact, but which we
prefer to deduce as above from the Laws of* Motion. The
forjnal statement of that principle is as follows : when a
force acts on a rigid body, %t is indifferent on what particle

in the line of action it acts, provided that particle is part
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of the body, or rigidly connected with it This follows

directly from the proposition just proved. For let ApB
be any two particles, in the line of action of the force P,
and rigidly connected with the body. We have just proved

that a force Q equal and opposite to P, will counterbalance

it, provided Q acts at a point in AB rigidly connected

with the body : hened’ the force P counteracts Q, whether

P acts at A or at P As regards its effect on the body as

a whole, we may say then, that it is indifferent at which
point we apply the force P. It is however in this sense

only, that it is^ indifferent
;

if we take into consideration

the internal forces brought into play in the two cases,

they will probably be very diflferent.

Imagine, for instance, a sphere resting' on a smooth horizontal plane
^

a force of a certain magnitude, and in a certain direction will give the

sphere the same change of velocity, whether the force take the shape of

a push behind or a pml in front, yet the internal forces in the sphere

will be different in the two cases, as in the first case the tendency of the

external force is to compress the sphere,* whereas it has the opposite

tendency in the second case.

The proof of the converse principle, viz. that if it is

indifferent at which of two points a force is applied, the

line of action of the force must be the line joining them,

is obvious from what has gone before.

Ex. 1. A square lamina ABCD is acted! upon by a force of S lbs.

along AB, 2 lbs. along CB, 1 lb. along CD, 2 lbs. along AD, J2 lbs.

along CA, andi^/2 lbs. along BD prove that it is in equilibrium.

Ex. 2. A weightless rod AB, 10 feet long, has weights of 7 lbs. hung

at eadi end, and one of 11 lbs. at its middle point : a string is attached to

a point 2 feet from A and after passing over a smooth pcj^ vertically

above the point of the rod to .vhich it is attached, supports a weight of

10 lbs.: another string attached ^o^a point 8 feet from B supports in a

similar way a weight of 15 lbs. Prove that the rod is in equilibrium.

Ex. 8. A rigid rod AB, 20 inches long, is acted upon by the follow-

ing forces: 8 lbs. at A along BA, lbs. at right angles to AB, ^t a

point 5 inches from A, 6 lbs. at a point 5 inches from B, and making an

angle of with the part of the rod on the same side as A, and lbs.
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at B making an angle of 80^ with AB prodaoed. Prove that there will

be,i9qailibrium, provided all the forces are in one plane, and the 3rd force

acts on the opposite side of the rod to the 2nd and 4th.

Ex. 4. ABCDEF is a regular hexagonal lamina: prote that it is

kept in equilibrium by the following seven forces : 2 lbs. along AB, CJ),

BE, FA, and AB, 5 lbs. along CB and 3 lbs. along FE.

64.* Prop. A Hgid body 'under the actim of -uny

system offorces, is in equilibrium, provided the algebraical

sum of their mornents about each edge of any given

tetrahedron be zero.

Let ABCD be the giveu tetrahedron/ such that the

^ Flg.30. .

algebraical sum of the moments of the forces about each
ed^e is zero. If the body is not in equilibrium under the
action of the system of forces in question, it can be fixed

(Arts. 50, 51) by applying suitable forces of constraint P,

Q, R at A, B, and U respectively. Also Q may be taken
perpendicular to AB, and R perpendicular to the plane

ABC,
Since the body is in equilibrium under the action of

the original forces together with P, Q aAd R, these forces

must satisfy the necessary conditions of equilibrium. There-
fore the algebraical sum of their moments about AB is

zero ; but the algebraical sum of the moments about AB
ofiihe original forces a,lone is zero, and the moments of

both P and Q about AB are clearly zero, so that the
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moment of the remaining force R must.be zero. R being
perpendicular to the plane ABC, can neither intersect AB,
nor be parallel to it, so that its moment about AB can
only vanish by R itself vanishing (Art. 38).

Similarly by taking moments about AC and AD, we
see that the moment^ of Q about each of these lines is

zero» hence Q must either be zero, or its line of action

must lie in each of the planes BAC, BAD, i.e. must be the

line AB; the latter alternative is out of the question,

because Q is perpendicular to AB : Q must therefore be
zero.'

•

Again, by taking moments about BC, DB, and DC,
we obtain that the moment of P about each of these

lines is zero, i.e. th?-t if P is not zero, its line of action

lies in each of the planes BAC, BAD, DAC, which is

impossible. P mirst therefore be zero. All the forces of

constraint being zero, we see that the body is in equili-

brium under the action of the original forces only.

55.* Prop. A rigid body under the action of any
system offorces is in equilibrium, provided the algebraical

sum of their moments- about each of any three given

straight lines intersecting in a point, but not in one plane,

be zero, and the algebraical sum of their resolved parts

along each of these lines be zero also, ^

Let OA, OB, OC be the straight lines, such that the

algebraical sum of the moments of the forces about each

of them is zero, and that of their resolved parts along

each is zero also.

As in the last proposition, if the body is nof'in equi-

librium, it may bfe fixed ‘'y, applying suitable forces of

constraint P, y, R at 0, and B respectively; R may
be taken perpendicular to the plane OAB, and Q perp^-
dicular to the line OA. Then as in Art. 54, by taking

moments about OA, R is found to be zero
;
and Q also by

taking moments about OB and 00. But the algebraical
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sum of the resolvqd parts of the original forces together

.wkh P, along each of the lines 0-4, OP, 00 must be zero

;

/

c

I

hence the resolved part of P along erch of these lines

must also bo zero, i.e. ifP is not zero, it is perpendicular

to each of the linos 04, OP, 00, which is impossible as

they do not lie in one plane. P must therefore be zero.

The body is therefore in equilibrium under the action of

the original forces alone.

The sufficient conditions of ecjuilibriuin of any system
of forces acting on a rigid body can bei expressed in many
ways, other than the two given above.

56. We have seen that if two systems of forces are

equivalent, either of them reversed will counteract the

other; hence it is sufficient for equivalence when ’both

systems are in the same plane, if any one of the following

sets of conditions holds. (1) If the algebraical sum of the

moments about each of three points in the plane but not

in the same straight line, of o4e system* be equal respec-

tively to the corresponding sum of the other. (2) If the

algebraical sums of the moments about onC point in the

plwe, and of the resolved parts in two directions in it, of

on8 system be equal respectively to the corresponding

sums of the other. (3) If the algebraical sums of the
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moments about each of two points in the plane, and^of
the resolved parts in one direction in the plane, not
perpendicular to the line joining the two points, of one
system, be equal respectively‘to the corresponding sums
of the other. .

Analogous conditions of equivalence can be obtained

from Arts. 54, 55, for systems of forces which are not in

one plane.

57. To find the resultant action on a body of a weightless string

stretched round it.

Let PABCDQ be a string stretched over a body, A and D being the

points where the string leaves the body. The forces acting on the part

ABCD of the string are the force due to the part PA, or the tension at A
along AP, the tension at D along DQ, and the innumerable actions of

the body at every point of ABCD, Since this portion of the string is in

equilibrium, the two tensions counteract all these actions along ABCD,
i.e. they just balance the resultant of all these actions. But b^ Newton’s

Third Law, the resultant action of the string on the body is equal to,

opposite to, and in the same 'ht line as, that of the body on the

string. The two tensions counteract the latter of these resultants, Le.

they are equivalen| to the former. We may therefore, in consideringthe

equilibrium of the body, suppose that it is acted on directly by the

eions at A and B, instead of supposing, what is really the oase^ tiat

these tensions act on the string ABCD, and so cause it to exort on the

body the innumerable small forces, to which the tensions are equivalent.

^ • G. 6
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We arrive at the same conolarion hy regarding the body«nd the por-

tion ABCD of the string as one i^stem of particles: in that case the

tensions at A and B are forces external to the system, while the innu-

merable actions and reactions between the string and the body are

internal forces.

Ex. 1. A smooth pulley is supported by a string which passes under-

neath it : find the weight of the pulley, if tne tension of the string is

10 lbs. and the two parts not in contact with the pulley make anglies of

80® with the vertical. 10^ lbs.

Ex. 2. Three smooth pegs are fastened in a vertical plane, so as to

form an equilateral triangle whose base is horizontal and vertex down-

wards. A string with a weight 5 lbs. attacfiied to each end, is passed

under the lower peg and over the other two. Find the pressure on each

peg-

Am. 6 aJb lbs. on lower peg. i (J2 + »J%) lbs. on upper.

Ex. 3. A rope is passed several times round a fixed rough post, the

tensions exerted at the ends of the two parts of' the rope not in contact

with the post, are 3 lbs. and 2^2 lbs. respectively, and these two parts

make an angle of 45® with one another. Find the resultant action of

the rope on the post. ^29 lbs.

* Ex. 4. A circular cylinder {W) is placed with its axis horizontal on
a smooth inclined plane: a weightless string is attached to a point in the

plane and after passing over the cylinder supports a weight P, the

straight portions of the string being respectively horizontal and vertical

:

shew that if there is equilibrium, the inclination of the plane to the

horizon is tan-* {P/(P+ TT)}.

58. We have seen how to obtain the resultant of two
forces acting on the same particle; if now we have two
forces acting on a rigid body, but not on the same particle,

we can find a single force equivalent to them provided
their lines of action either meet or are parallel, except in

the case in which the forces are equal and opposite, but
QOt in the same straight line. If their lines of a^on*
meet in a point, we may by the principle of the trans-

missibility of force, suppose each force to act at this poiirt,

and then their resultant is just what it would be if the
forces really acted on a particle, situate there and rigidly

connected with a body.
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59. Tke Bssvllxint of two parallel /(yrcee. By Art. ^6,
a force in the^same plane, whose resolved part in each of
two directions in that plane equals the algebraical sum of
the resolved parts of the two forces in the same direction,

and whose moment about some point in tl^e plane equals
the algebraical sum of the moments of the two about that
poiqt, is the resultant.

Let il, jB be two points where two parallel forces, P,

Q respectively act. The first two conditions are satisfied

by a force which acts in the same direction as P and Q,
and is equal to their algebraical sum. The required force

must then be parallel to the otbTer two, and^at such
distances from them that their moments about any point

in it are equal in magnitude but opposite in sign. It will

therefore be between them if the signs ofP and Q are the

same, but not otherwise : its distances from them must be
inversely proportional to their ma^itudes. Hence if 0 be
the goint where its line of action meets AB,*F . AO
Q . £0. When P and Q in opposite directions, the

‘greater force will clearly lie between the less and the

resultant
^

Oor. The pbsition of C7 is independent of the direction

of the forces, so long as they remain parallel
*

If the forces P and Q are equal in magnitude and

6—2
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opjposite in sign, the precedii^ solution fails, anj we can
find no single, force, whose effect is equal to that of the
twb together. Two such forces constitute a ctmple.

Ex. 1. Four forces, P, 2P, 3P, and 4P act along the sides taken in

order of a square :^jfind their resultant.

Ans, 2P^, acting parallel to the diagon|}l through the comer where
2P, and 3P meet, and at & distance from it } times a side of the

square.

Ex. 2. A uniform beam 4 ft. long is supported in a horizontal

position by two props which are 3 feet apart, so that the beam projects

one foot beyond one of the props: shew that the pressure on one prop is

double the pressure on the other.

Ex. 3. If a bicycle and its rider weigh 60 lbs. and 10 stone respeo-

tively, find how the pressure on the ground is divided between the two

wheels, whose points of contact with the ground are 3 ft. 6 inches apart,

while the points through which the weights of the bicycle and rider act,

are distant horizontally 7 in. and 6 in. respectively from the centre of the

driying wheel. An». 170 lbs. and 30 lbs.
o

60. Since a rigid body under the action of any system
of coplanar forces, can be fixed by two forces of constraint

acting in that plane at two arbitrarily chosen points in it,

the system must be equivalent to the forces of constraint

reversed : but two forces in one plane can be replaced by
a single one, r unless they form a couple. Hence

Any system of forces in one plane is equivalent to a
singleforce or a couple.

61. Prop. If three forces maintain equilibrium, their

lines of actim m'ust be in one plane, and either all meet in

one point or be all parallel.

Let «P, Q, R be the three forces, Aa, Bb, Cc, their

respective lines of action.

Since the al|^ebraical sum of the moments of a system
'

of forces in equilibrium about any line is z^ro, that of the
moments of Jr, Q, R about AB vanishes

:
|)ut as P and Q

bath intersect this line, each of their moments about it is

zero, hence that of R about it must also be zerq, io. Go
meets AB or is parallel to it.
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Similarly we can shew that Cc meets, or is parallelto

Ah. Therefore Oc either lies in the plane ABh or passes

through A. In the first case R and Q are in the same
plane, in the second R and P. Sut if two of the forces

are in one plane, the third must also ha in it, as its

moment about every line in the plane must be zero.

Hepce all three forces are in one plane.

If the forces are not all parallel, two of them meet and
can be replaced by a single force, which is counterbalanced

by the third force, and is therefore in the i^ame straight

line with it, i.e. the third force passes through the point

of intersection of the other two. •

Oor. Two forces, whose lines of action are not in one
plane, cannot be equivalent to a single force.

62. Re/. The moment of a couple is the algebraical

sum of the moments of the two forces which form it,

about any point in their plane.
*

This, moment can easily be shewn to be independent
of the position of the point and to be equal to the product
of either force tntd the arm, ie. the perpendicular aistance

between the lines of action of the forces.

For let P acting at A^ and P acting in the o|>poSte

direction at P, form the couple. Then the algebraical

sum of the momepts of the two forces al^ut 0 is
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in.S’ig* <36). P (Oa + Oh) =P . ah.

Fle.36 /

in Fig. (36), (Oa — 06) =P . a6.

in Fig. (37), P {Oh -Oa)^P, ah.

X
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* ^

where Oa, Oh are the perpendiculars from 0 on the lines

of action of the folrces,
•

•

If the body on which the couple acted were only free

to turn round 0, the tendepcy of the couple in all the
above figures is to turn the body in tl\e direction in

which the hands of watch move
;
the couples are said

therefore to have moments of the same sign, or to be like
;

were the tendency of one of them to turn the body
in the opposite direction, its moment would be of the
opposite sign, and it would be wnlike the other two.

63. Prop. Two like couples of equal moment^ in tlue

same or parallel planes^ are equivalent tio one another,

(i) When the couples are in the same plane.

In this case the two couples form two systems of forces

in one plane, such that the algebraical sums of their

moments about any point whatsoever in the plane are

the same; ^therefore the systems are equivalent to one
another (Axt. 56).

(ii) When the couples are in parallel*plenee.

Let P,, Pj be the two equal forces forming one of the

couples, acting at the points A, B respectively.

^0

In the plane in which the other coimle acts, draw CD
equal and parallel to AB, Join AD, BG^ intersecting in

0 \
then 0 oisects both AD and BG.
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Pj at A may be replaced by 2Pj at 0 and P^ at D.
Pg®at B may be replaced by 2P^ ajb 0 and P^ at (7 : 2Pj and
2Pj at 0 counteract one another, so that we are left with

P^ at C and P, at P, as equivalent to the original couple.

But these two forces constitute a couple like to the original

one, equal to it and in the given plane parallel to it: there-

fore as the original couple is equal ^to one couple in ,the

parallel plane, it is by (i) equal to any like couple of the

same moment in that plane.

64.* The latter part of the last proposition might have
been proved in a manner analogous to that adopted for the

former, as follows.

Let A and B be the two couples : we shall prove that

A and B reversed satisfy the sufficient conditions of equi-

librium of Art. 55.

Take three straight lines, intersecting in a point, one
perpendicular to the plane of each couple, and the other

two in the plane of B,

It is obvious that the algebraical sum of the resolved

parts of the four forces in each of these directions is zero

:

also the moments of A and B reversed, about the line

perpendicular to their planes, are numerically equal but of

opposite sign. Hence the algebraical sum of the moments
of the four forces forming them about this line is zero.

The moment of each of tho forces forming B reversed

about any line in their plane is zeio, and the moments of

the two forces forming A, about any line in the plane of

B, are equal numerically but of opposite sign; the alge-

braical sum .of the moments of all four forces about every

straight line in the plane of B is therefore zero.

The six sufficient conditions of equilibri'um of Art. 55*

arq therefore satisfied, and the couples A and B reversed

balance one another
;
in other words A and B are equiva-

lent.
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Ex. 1. Like parallel forces, each equal to P, act at three of the

comers of a rhombus, pezpendioular to its plane; at the other conler

such a force acts that the four forces are equivalent to a couple : £nd the

moment of the couple, provided the angle of the rhombus at 'which the

last force acts is 6(F. Atis* 2^3 . Pa, where a is a aide of the rhombus.

Ex. 2. ABCDEFia a regular hexagon : equal forces act along AP,
BC, pE, EF^ and two other forces, each double any one of the former

forces, act along DC and AF : prove that they maintain equilibrium.

j65.* Let us consider what we require to know to

determine the effect of a couple on a rigid body. It is

unnecessary to know the actual position of the plane in

which the couple acts, but we must know the direction of

the plane, i.e. the direction of a line to which it is pei*pen-

dicular. We do not require to know the magnitude or

direction of the forces which compose the couple, but we
must know the magnitude of its moment and its sign, i.e.

the direction in which it would tend to turn the body round
a line perpendicular to its plane, the line being fixed and
the body rigidly connected with it.

Now a straight line at right angles to the plane of the

couple, and of length proportional to the magnitude of its

moment, will represent the couple in the first two respects:

also, if it be understood that the line is drawn in that

direction in which the axis of a rightrbanded Screw moves,

when it rotates in the same way aS the couple tends to

turn the body, the sign of the couple will also be re-

presented.

In fig. 89, if the anjswhead on the circle indicates the direction in

which the couple would tend to turn the body about AB, supposing the
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latter fixed and the body rigidly connected with it, the sign pf the conple

inMiooordanoe with the above convention would be represented hjAB and
not by

**

The line which thus completely represents the couple
is termed the (ixis of the couple.

66.* We shall now prove th&t couples follow,, the
Parallelogram Law, in other words, that

Iffrom a point the axes representing two couples he

drawn, and a parallelogram be constructed* on these i/wo

cures as adjacent sides, the diagonal passing through the

above-mentioned point is tlce cuis of a couple equivalent to

the two, i.e. of their resultant couple.

We may suppose the couples to consist of forces

acting at the ends of a common arm, in which case the
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moments Of the couples will be respectively proportional to

the forces composing them.
•

Let Aa be the common arm, and let AB,ab represent

the two equal and parallel forces foiming the first couple,

AO, ao those forming the second. «

Draw AB' perpendicular to Aa and AB, equal to AB,
and* in the direction which by the convention of Art. 65
represents the sign of the first couple: similarly draw AC'
perpendicular to Aa and AO, equal' to AC and in the
proper direction. Then AB' and AO' are the axes of the
two couples.

Complete the three parallclogicims, ABCD, ahcd,

AB'Ciy, and j<jin AD, ad, AD'. These parallelograms

are clearly 3qual in every respect, so that AD=^ad=^AD'.
Also AD, ad are parallel, and AD' is perpendicular to AD.

But the two forces AB, AO are equivalent to AD, and
the two ah, ac, to ad, so that the two couples are equivalent

to AD, ad, which form a couple of which AD' is the axis.

Hence the C( uples whosn axes are AB', AO' ar^^ equivalent

to a resultat t couple of which AD' is the axis.

Cor. Hence we may deduce propositions relating to

the composition and resolution of couples, analogous to

those obtained in Arts. 19—26, 30—32, relating to the

composition*and resolution of forces.* ,

67.* Prop.
^
Any system of forces acting on a rigid

body can be rediwed to a single force acting at any
arbitrarily chosen point and a couple.

Let A be the arbitrarily chosen point P any one of

the forces.
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We shall not alter the effect of the forces by applying

at A two forces P, each equal and parallel to P, and in

opposite directions to one another. P^ which is opposite tp

P, forms with P a couple. He.nce P is equivalent to P^
at A, and a couple.

The couple vanishes in the case jn which A lies in P’s

line of action. <

Similarly we may replace each of the other forces by a

foico at A, equal to it and in the same direction, and a
couple.

The whole system thus reduces to a series of forces at

Af respectively equal to and in the same direction as the

several original forces, and a series of couples. But the
forces at A are equivalent to a single resultant at A, and
the couples to a single resultant couple^

Cor. The magnitude and direction of the single

resultant is the same wherever A is, and the resultant

couple is the same for all positions of in a •line parallel

to the single resultant force.

68.* Prop. Any system of forces acting on a rigid

body is equivalent to a single force and a couple whose
aods is parallel to the direction of the single force.

/?A

Hcos^ I

Halni*^ Fig.42

^'1

By the last proposition, the system i^ equivalent to

a single force B acting at any given .point A, and a couple

//., If the axis of H make an angle ^ with the diiection

of B, it may be resolved into if cos
<f}
in the direction of B

and H sin ^ at right angles to that direction.
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Draw -4JS TOrpendicular to both R and the axis of H,
and make Ai equal to sin 6)/R

;
then, applying kt

R two forces equal and ^parallel to B, but in opposite

directions to one another, the system is equivalent to B at

B in its original direction, the couples H cos tf>, H sin

and the two forces B at A, and R in the opposite direc-

tion^ at B, But the 'last two forces are equivalent to a
couple whose axis is at right angles to both R and
ABy i.e. is in the same straight line as the axis of the

couple sin ^ : its moment is R,AB or H sin If

AB be drawn as in fig. 43, the axes of these two couples

are in opposite directions by the convention of Art. 65

:

the two couples therefore counteract one another, and we
are left with i2 at B and the couple H cos ^ whose axis is

along jB*s direction. Such a force and couple together

form what is called a wrench.

J2’8 line of action through B is termed Poinsot's Central

Adds for the corresponding system^ of forces.

The algebraical sum of the moments of the system of

forces about the axis of H through A is Hy about a line

through Ay making an angle 0 with AHy the sum of their

moments is H cos 0. Hencfe All is called the cuds of
principal viomerd at Ay as the sum of the moments of the

forces about it is greater than that about any other line

through A.
•

69.

* Prop. ITie algebraical sum of the moments of
the forces about Poinsot^s Central Axis is less than that

about any other cuds ofprincipal moment.

.
For (Art. 68) (fig. 42) the sum of the moments

abou,t the central axis is H co«t whereas the su^i of the

moments about the axis of principal moment at A is H.

For this reason the Genii Axis is sometimes termed
the Axis of Les^st Principal Moment.

70.

* Prop; Any ^system of forces acting on a rigid

body tan be reduced to two equal forces equally inclined

to the Central Axis.
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For let 00 be the central axis, Jt being the single

resultant force, andH the moment of the resultant couple.
'

whose axis is 00.

If tl

.

Fis:.43

Through 0 draw AOB perpendicular to 00, and make
04 = 05.

We can replace iZ by \R at A, and at B, each

in the same direction as iZ
;
we can replace the couple H

by a force P at A, and a force P dt B, each perpen-

dicular to the plane GOA, but in opposite directions,

provided P = HjAB. *

The resultant of P and \R at A, and that of IP and iP
at B, will clearly be equal to one another and will make
equal angles with ^R, i.e. with the Central Axis.

71. Recapitulation, Eegarding any body at rest what-
soever, as a collection of particles each of which is at rest,

we can ‘assert that the algebraical sum of the resolved

parts in any direction, of all the forces, internal as well as

external, acting on the body is zero : also that the alge-

braical sum of their moments about any line is zero. But
as by Newton’s Third Law the internal forces consist

entirely
^
of pairs, which are equal, opposite and in the

same straight line as one another, the algebraical sums of

the resolved parts, and of th'e moments of the internal

forces are both zero. Any system of external forces which,

to|;ether with internal ones, maintain a body in equili-

brium, must therefore be such that the algebraical sum of

their resolved parts in any direction is zero and that of

their moments about toy Hue is zero also.
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Next, consideritig rigid bodies only, we shew that a
body under the action df any system of external forces

whatsoever can be fixe(f by the application of suitable

forces at three arbitrarily chosen points, and that the

direction of one of these forces may taken perpendicu*

lar to the plane containing the three points, and that of

another perpendicular to the line joining its point of ap-

plication to the third point. When the forces are coplanar,

the body can be fixed by applying suitable forces at anv
two points ill the plane of the forces, the directions of both
forces bein^ in the plane and that of one perpendicular to *

the line joining the two points. From this proposition

follow the sufficient conditions of equilibrium of a system

of coplanar forces acting on a rigid body. These conaitions

may be given in three different forms, and each form
is expressed algebraically by three equations. When the

forces are not in one plane t^he sufficient conditions of

equilibrium can be put in many different forms, and each
form requires for its algebraical expression six equations.

Defining two forces as equivalent, when either counter-

acts the other reversed, we deduce the principle known as

the ‘ Transmissibility of*Force.* .

The resultant of two parallel forces is obtained by
finding from the sufficient conditions of equilibrium, a
force which will counteract them, and then reversing it

It is then shewn that if three forces maintain equili-

brium, they must be coplanar and either concurrent or

parallel.

Then we shew that two couples are equivalent when
their moments are equal and their planes coincident

or parallel; hence that cd*q)^s can he represented by
straight lines, and that they can be compounded and
resolved like forces by the Parallelogram Law. It was
shewn that any system of forces in one plane is equiva-

lent to a single force or a couple, it can now be shewn that

any system of forces whatsoever, acting on a rigid body, is
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equivalent to a single force and a couple acting in a plane

joiferpendicular to the force, or to? two. equal forces, equally

inclined to the Central Axis.

Illustrative Examples.
• t

(

« Ez. 1. If four forces acting along the sides of a quadrilateral are in

equilibrium, prove that the quadrilateral is a plane one, and also, that if^

the quadrilateral can be inscribed in a circle, each force must be propor-

tional to the length of the opposite side.

Let ABCD be the quadrilateral. The forces along AB^ BC hav^ a

resultant through B and in the plane ABC
t
similarly those along AD^ DC

have a resultant through D end in the plane ADC, But as the four

forces are in equilibrium, these two resultants must be in the same

straight line, BB, i.e. BD is in each of the planes ABC, ADC and the

quadrilateral is a plane one.

When«ABCZ) can be inscribed in a circle let P, Q, B, be the forces

along AB, CBt CDy AD, respectively^

a
Since the forces are in equilibrium, the algebraical sum of their

moments about A is zero; *

*. Q . ABsinB-B. ABsinBsO;

Q B , P S= = C0“5(/-
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Ex, 2. ABCD is a quadrilateral, and two points P, Q are taken in

AD, BC such that AP:PD= CQ: QB, From P, Q, straight lines PM',

QQ' are drawn parallel to*, equal to, and in the same directions as BO
and DA respectively. Shew that forces represented by AB, CD, PP,
QQ' are in equilibrium.

The force PP' can be replaced by two forces pai’allel to it, at A and D

:

the force at A : PP'==PD ; : BC;

force a,t A ^BQ;

similarly, force at J) = QC.

The two forces AB, BQ, acting at A, are, by the triangle*»of forces,

equivalent to AQ; and the two QC, CD, at D, to QD. Hence the four

original forces are equivalent to AQ, QD, and QQ', all acting through Q,

and represented by the sides of the triangle AQD, taken in order. They
are therefore in eqiiiUibrium.

* Ex. 3. A system of forces represented by the sides of a plane polygon,

taken in order, is equivalent to « qpuple, whose moment is represented

by twice the area of the polygon, » •

Let the forces b^ represented by the sides AB, BC, CD, DE, EF, FA,

of the polygon ABCDEF,
«

We know that if Ijie forces are not in equilibrium, they are equivalent

to a single resultant or a couple (Art. 60).

Q. 6
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But as the algebraical sum of their resolved parts in any direction is

zero, their resultant is zero, i.e. they ore in equilibrium, if they are not

equivalent to a couple.

Take any point 0, and join OA, OB, OC, Ac.: then the moment
of AB about O is measured numerically by twice the area of the

triangle OAB, since the area of OAB is equal to ^AB into the perpen-

dicular from O on AB: and similarly for the other moments. Hence the

algebraical sum of the moments of AB, BC, Ac. about O is measured by

twice the area of the polygon, i.e. is not zero. Vhe system then must be

equivalent to a coiiple, and the moment of this couple is represented by

tuice the area of the polygon. •

Ex. 4. A uniform rod hangs by two strings of lengtns I, V, fastened

to its ends and to two points in the same horizontal line, distant a

a^art, the strings crossing one another. Find the position of equilibrium,

and shew that if a, a* be the angles that I, V make with the horizontal

sin (a + a') (V cos a' - f cos a) ~a sin (a - a').
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Let 0 be the angle which the rod AB makes with the vertical : let 0 be

the point where the strings cross one another. Since the rod is in equt-

librinm under the action of thr^ fCrcps, two of which, the tensions of

the strings, meet in O, the third, the weight of the rod, passes through 0.

But^he weight acts vertically through the middle point ofthe rod, which

point 0, must therefore be in a vertidal line with 0 : heilce the perpendi-

culars AM^ BN on OQ are equal and horizontal.

•
'• (1 “ OC) cos a = (r - OD) cos a.

But

or

OC a
sin a' bin a sin (a+ a')

*

cos a\

sin (a+ o') (I cos a-V cos a') =a sin (a' - a) (1).

a Bin a

(
sin (a + o')

— 003 0=: Z'-
sin (o+a'){

If h be the length of AB, since the algebraical sums of the vertical and

horizontal projections of AB, BB, DC, CA are both zero, •

Z sin o - 6 sin d - V bin o'=0,

I <iO^ a - b cos d-hZ' cos a'-y a=0.

The^ cquatijns with (1) enable us to obtain o, o', and which de-

termine the pobition of equilibrium.

The above is an example of a geometrico-htatical problem, in which

the position of equilibzium, which must clearly exist, is required, and
is obtained from geometrical considerations.

•

If the weight of the rod be given, the othep unknown quantities, the

tensions of the strings, can be obtained by u^ng two more comHtions of

equilibrium, since there are three, and one only has been used. As there

are five unknown quantities, and only three sufficient conditions of equi*

librium, we must have two geometrical conditions in order to completely

solve the problem.

Ex. 5. A unifonn heavy rod of length 2a is placed across a smooth

horizontal rail and rests with one en^ against a smooth vertical wall, the

distance of which from the rail is I*

:

shew thit the angle the rqd makes

with the horizon is 4!os"^ (A/a)^.

Let 0 be the inclination of the rod to the horizon, in the position of

equilibrium. The forces acting on the rod AB are its weight verticaNy

downwards through its middle point, the readtion of the wall, hori-

zontally through A, and that of the rail C, at right angles to AB. These

6—2 .
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forces must therefore meet in a point D. Since AVO, ACD are tight

ahgles, AD^=AV . AG,
r

rt® COS® 0=ah aeo 0, •

cos’ 0=:hla,

Or, we might have proceeded thus : let R be the reaction of the wall,

S that of the peg, and W the weight of the rod. Besolving vertically,

we have W-S cos 0=0 (1).

Taking moments about J/ •

S . AC=W . AD,

Sh see 0— Wa cos 0 .(2).

From (1) and (2) cos® 0=hla,

Besolving horizontally,

R-S sin 0=0 (3).

Hence R and S can be obtained.

The Advantage of resolving vertically and taking moments about A is

that in neither case does the force R com^ into the corresponding equation.

Ex. G. Shew that the greatest inclination to the horizon at which a

uniform^rod can rest, partly within and partly without a fixed smooth

hemispherical bowl, is sin”^
»

* Let ADKC be the circular section of the complete sphere, made by
the vertical plane containing the rod AB, which rests^against the edge of

the bowl at (7. COD is the horizontal diameter of the sphere through (7.

The rod is kept in equilibrium by its weight through GF, itrmiddle

point, the reaction of die bowl at A, along the normal AO^ and that at

C perpaidicular to AB, and therefore meeting .iO on the sphere at E,
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Since these three forces pass through one point, OE mast be a

vertical line. ^

Let ACO^Bi r=r radius of the bowl.

Then AC=AE cos EAC=2r cos B (1),

since

AG=:AE
sin AE^ ^^^cosj2B

sin EGA cos B

AEG= iir- EOF=^W - 20.

(
2 ).

Since AG is half the rod, (2) determines tlie position of equilibrium.

Let
'AC* •

C08»2^ 2 C08^g~l
' COS* $ ~ cos* B

*

cos* .

2-m

B clearly has its greatest value when m has its least value, i.e. when

since AG cannot be less than half AC.
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Hence the greatest value of $ is given hy

cos^ d=

or sin 6= *

^/8
f

Ex. 7. Four equal spheres rest in contact at the bottom of a smooth

spherical bowl, their centres being in a horizontal plane. Shew that, if

another equal sphere be placed upon them, the lower spheres will separate

if the radius of the bowl be greater than (2/^13 + 1) times the radius of

a sphere.

Let F, t7, 2) be the centres of the four spheres respectively, O that

of the upper sphere, O' that of the spherical bowl. Then AB^ BCy CD^

l)At OA, OB, OC, OD are each equal to the diameter (2r) of any one of

the spheres. 0 and O' are clearly in the vertical line through II, the

intersection of the diagonals of the square ABCD,

• ^AR
-m.

‘ r.,rr k/2 1
Then 0/= r33“ V2’

/. I OAH=45».
u

When the lower spheres are just on the point of separating, there is

no pressure between any two of them, so that each of them is in equi-

librihm under the action of its weight, the pressure of the upper sphere,

and that of the hollow sphere. Let W be the weight of each sphere, R
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From thethe reaotion between the upper and any of the lower spheres,

equilibrium of the upper sphere, resolving vertically,

H’-ls.i.O,.

w
2^2*

• W
The resultant of W acting vertically, and

^
along OA, on the sphere

_W 1

2J2'J2
whose centre is A, makes with the vertical the angle tan“ ’ '-I" »

i.e. tan“i

But this resultant is equal and opposite to the pressure of the bow

which acts along AO\

Therefore tan AO‘H=:^\y

AU , i 1

= ^26-

O'A =^/26 . A//-i2rv'l3.

But the radius of the hollow sphere is equal to O'

A

together with r,

therefore radius of the bowl= (2 + 1) r.

If the bowl is any larger, O' will be further from JY, and for the

pressure of the bowl to counteract the resultant of the other forces on

the sphere (centre A), we shall ha\e to suppose that the actions of the

two adjacent lower spheres on it are towards their respective centres

instead of away from tliem. But as the spheres are incapable af exerting

such forces, equilibrium is not possible, i.e. the spheres will separate.

Ex. 8. A heavy bar, AB, is suspended by two equal strings of length

, 7, which are originally parallel : find the couple which must be applied to
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the bar to keep’it at rest after it has been twisted through an angle B in

a^iorizontal plane.

Let Cy D be the fixed .ends of the stiings; CA\ the original

vertical positions of the strings.

Draw Aay Bh at right angles to CA\ respectively. Join ah cut-

ting AB in its middle point G. Let 2a be the length of AB, and 0= angle

aCA or bDB,
**

,

Then CA sin aCA =aA =2AG sin ^aGAy

I sin 0= 2a sin (1).

Let 2' be the tension of either string : they will from symmetry be

the same.

Let P be the magnitude of the force which applied horizontally in

opposite directions at A and B, at right angles to AB, Will keep the lod

in equilibrium.

Besolving vertically, we have

W^-2rcos^=0. *

Taking moments about the line of action of Wy wc have

2i* . a - 22' sin 0 . a cos 0.
^

Hence 2P(t =
aW sin 0 cob IB

cos
<f>

(
2 ).

(1) and (2) enable us to determine 2Pa in terms of a, 1, W and B.

In this example we have assumed as obvious that a couple only is

required to maintain equilibrium: it ran be shewn however that the

values we have obtained for P and T wull satisfy the six conditions of

equilibriufii of Art. J5.

EXAMPLES.

1. Four points A, B, C, D lie on a circle and forces act along the

chords AB, BCy CD, DA, each force being inversely proportional to

the corresponding chord: prove that the resultant passes through the

common points of (1) AD, BC; (2) A*By DC
; (3) tangents at P, D, and

(4) tangents at A and C, *

^
.

2. If six forces acting on a body be completely represented, three by
the, sides of a triangle taken in order, and three by the sides of the

,

triangle formed by joining the middle points of the sides of the original

triangle, prove that they will be in equilibrium if the parallel forces act
*



STATICS OF SYSTEMS OF PARTICLES. 89

in the same direction, and the scale on which the first three forces

are represented be* four times as large as that on which the last three ^u:e

represented.
’

8.

Forces P, Q, R act along the sides of a triangle ‘ABC, and their

resultant passes through the centres of the inscribed and circumscribed

circles
:
prove that

cos B - cos C cos C - cos A cos A - cos Ji
*

4. Prove that a uniform rod cannot rest entirely within a smooth

hemispherical bowl, except in a horizontal position.

5. If a uniform heavy rod be supported by a string fastened at its

ends, and passing over a smooth peg
;
prove that it can only rest in

a horizontal or vertical position.

6. A heavy equHuteral triangle hung upon a smooth peg by a string,

the ends of which are attached to two of its angular points, rests ^ith one

of its sides vertical; shew that the length of the string is double the

altitude of the triangle.

7. A fine^tring ACliJ) tied to the end A of a uniform rod AB of

weight Wy passes through a fixed ring at C, and also through a ring

at tlie end B of the rod, the free qnd of the string supporting a weight P

;

if the system be in equilibrium prove that AC : BC :: 2P+ IT : W,

8. A horizontal rod, the ends of which are on two inclined planes, is

in equilibrium: if a, j9 be the inclinations of the planes, prove that

the centre of gravity of the rod divides it* into two parts in the ratio

of tan a to tan jS.
* *

9. A uniform heavy rod AB has the end A in contact with a smooth

vertical wall, and one end of a string is fastened to the rod at a point C
such that AC=JAB, and the other end of the string is fastened to the

wall; find the length of the string if the rod is in egnilibrium in a

position inclined to the vertica' «

10. A cylindrical ruler who.'i *adius is a, ’and length rests on a

horizontal with one end pressing against a smooth vertical wall,

to which the railris parallel. .Shew that the angle the axis of the ruler

makes with the vertical is given by (h sin ^+ a cos 6) sin^ d+ 2a cos $^b,

where b is the distance of the rail from the wall.
^ t

11. Two equal heavy spheres of one inch radius are in equilibrium

within a smooth spherical cup of three inches radius. Shew that the
^
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presBtire between the cup and one of the spheres is double the pressnre

betgRreen the two spheres.

12. Along each side taken in order of a polygon inscribed in a cirde,

acts a force whose magnitude is proportional to the sum of the lengths of

the two adjacent sides
:
prove that the system of forces is equivalent

to a system of forces acting along the tangents at the corners of the poly-

gon, each such force being proportional to the length of the chord joiping

the two adjacent points.

18. ABCD is a quadrilateral : forces act along the sides AB, BC, CD^

DA measured by a, 7 , 5 times those sides respectively. Shew that if

there is equilibrium ay=^fi5.

Shew also that C= a (7 - j8)/5 (jS - o).

14.

Into the top of a fixed smooth sphere of radius a is fitted firmly a

fine smooth vertical rod. A bar of length 2b has at one end a ring which

slides on the rod ;
and the bar rests on the sphere^ Shew that in •equili-

brium the angle (a) the bar mokes with the horizontal is given by

a sinasb cos^a.

15.

Forces P, Q, i2 act along the sides BC, CA, AB of a triangle

;

shew that their resultant will act along the line joining the centre of the

circumscribing circle with the orthocentre if

PiQiB COB B
cos C

cos C
^
cos C _ cos A

^
cos A cos B

cos B ' cos A cos 0 ’ cos B cos A *

16. A kite (weight P) Ifeving a tail (weight Q) is stationary, with a

normal to its face, the direction of the wind, which is horizontal, and the

string in the same vertical plane. The tail is attached at a distance a

below the kite’s centre of gravity, the string at a distance b above. Shew
that, neglecting the action of the wind on the tail, the inclination of the

kite to the horizon is given by the equation

* 116 sin® 0= {Pb -hQ (a +b)} cos 0,

where n is the pressure on the kite, when placed perpendicular to the

wind’s direction.
I

17. Forces act at the middle points of the sides of a rigid polygon in

the plane of the polygon
; the forces act at right angles to the sides, and

tore respectively proportional to the sides in magnitude : shew that the

forces will be in equilibrium if they all act inwards or all act outwards.
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18. Show that it is impossible to arrange six forces along the edges of

a tetrahedron so as to form a system in equilibrium. •

•

• 19. On the sides of a right-angled triangle ABC squares are de*

scribed, the square BCDE on the hypotenuse on the same side of BC
as A, and the squares CAFG, ABIIK on CA, AB on t];^e opposite side of

each to the triangle: prove that the forces represented by the straight

lin^s AJ8, BC, CA, BH, AK, KA, CD, DE, EB, AF, FG, GC will form

a system in equilibrium.

20. If four parallel forces balance each other, let their lines of action

be intersected by a plane, and let the four points of intersection be joined

by six straight lines so as to form four triangles
;
then prove that each

force is proportional to the area of the triangle whose angles are in

the lines of action of the other three.

’ 21. Two rings o^ weight,P and Q respectively, slide on a string,

whose ends are fastened to the extremities of a straight rod inelined

at an angle 6 to the horizon : on the rod slides a light ring through

which the string passes so that the heavy rings are on different sides of

the light ring. Prove that in the position of equilibrium the inclination

0 of thobe potis of the string next the weightless ring, to the rod, is

given by the equation tan 0/tan d= (P-f- Q)/(P'^ Q)^

22. An elastic string j)asses round three equal right-circular cylinders

so that when each cylinder touches tho other two along a generating

line, the stiing is just not stretched: shew that if the system be placed

on a smooth horizontal plane, the inclination (^) of the plane con-

taining the axis of the upper cylinder, and that of either o€ the lower

ones to the horizontal, in the position of equilibrium, is given by the

equation (ir+3) W=2\ (2 cos d - 1) tan $, {W is the weight of the upper

cylinder, and X is the modulus of elasticity.)

23. Two equal circular^ discs, of radius r, with smpoth edges are

placed on their flat sides in the corner between two smooth vertical

planes inclined at an angle 2a and touch each i>ther in the line bisecting

the angle; the radius of the leat- disc which may be pressed between

them without causing them to separate = r ( 1 - cos a)/cos a.

24. A rectangular lamina ABCD is supported with its plane vertical

and one edge AP in contact with a smooth vertical wall, by an endless

string which passes through smooth rings, one fixed to the wall at A,

and two others P, Q fixed in the sides AB, CD of the lamina respectively
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80 that PQ is parallel to AD, Prove that the string has the least tension

consistent with equilibrium when the position of Q is such that

BCjiAB=\»n\AQJ).

25. Forces act through the angular points of a tetrahedron per-

pendicular to the fopposite faces and proportional to them. Prove that

they are in equilibrium if they all act either inwards or outwards.

• r
26. AC, BD are two non-intersecting straight lines of constant

length; prove that the effect of forces represented in every respect by

AB, BC, CD, DA is the same, so long as AC, BD remain parallel to the

same plane, and their projections on that plane are inclined at a con-

stant angle to one another.

27. A flat ^emi-circular board with its plane vertical and curved edge

upwards rests on a smooth horizontal plane, and is pressed at two given

points of its circumference by two beams which slide in smooth vertical

tubes : find the ratio of the weights of the beams to one another when

the board is in equilibrium.
'

28. An endless string is placed round two equal cylinders and the

system is suspended from a peg so that the line joining th? centres of the

cylinders is horizontal. If the prossuie between the cylinders be equal

to twice the weight of either of them; prove that the length of the

string : the radius of either cylinder :: 4 (2-|-ta»-^ 2) : 1.

29. A homogeneous circular cylinder rests on two smooth planes

inclined to the* horizon at angles a and jS in opposite directions, so that

its axis iq at right angles\to the line of intersection of the planes.

Prove that the inclination 0 of the base to the vertical in the position

of equilibrium is given by

,

r bin {a+p) + 2a sin a sin p

where r is the radius of the base and 2a the length of the cylinder.

*30. In a triangular lamina ABC, AD, BE, CFwe the perpendiculars

on the sides, and forces represented by the lines BD, CD, CE, AE, AF,

BF are applied to the lamina; prove that their rq^ultant will pass

through the centre of the circle described about the triangle.

34. ‘An elliptic lamina rests against an inclined plane (a) being sup-

ported by a string attached to the extremity of its minor axis, so that

its major axis is vertical and the plane of the ellipse is perpendicular to
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the inclined plane. Shew that the inclination of the string to the

vertical is tan-^^Ay(a* + 6* tan® a)/(a* - 6*). «

•

82. A uniform bar of length a rests suspended by two strings of

lengths I and V fastened to the ends oFthe bar and to two fixed points in

the same horizontal line at a distance c apart. If the directions of the

strings, being produced, meet at right angles, prove that the ratio of

thejf tensions is al+cV : eft' + cL

33. Two weights P, P are attached to the ends of two strings which

pass over the same smooth peg and have their other extremities attached

to the ends of a beam AB, the weight of which is W\ shew that if B be

the inclination of the beam to the horizon (a+ &) tan^=(a~ 6) tana;

a, h being the distances pf the cefitre of gravity of the beam from its ends,

and sina=ir/2P.

34. A string 9 feet long has one end attached to the extremity of a

smooth uniform heavy rod two feet in length, and at the other end carries

a ring which slid(>s n{>on the rod. The rod is suspended by means of

the string from a smooth peg
;
prove that if 0 be the angle which the

rod makes with the horizon, then tan ^=3“J - S'"*.

35. A triangle formed of three smooth rods is fixed horizontally, and

a homogeneous sphere rests on it. Prove that the pressure ou each rod

is proportional to its length.

36. A sphere rests on ’three smooth pegs, which lie in a horizontal

plane, and are at distances a, 5, c from one another,’ prove tl\at the

pressures on the pegs are in the ratios

(&3+ c® - rt®) : 6® (c® a® - 6®) : c® (a®+ 6® - c®).

37.

APC, A'B'C' are two triangles inscribed in the same circle ; and

forces proportional to the sides of the triangle act along them, but in

opposite directions round the two triangles. Prove that, if a, /3, 7 be the

angljBS subtended at the centre of the circle by the sides of the one

triangle, and a^ jS', y those suM ^nded by the sides of the other, the forces

will be in equilibrium if sin^a rib 4,3 sin 47= sin 4a' sin 4j8' sin 47'*

3S. A, P, CfP are four points in space: four forces represented by

AP, AP, CP, and CP act along these lines
:
prove that they have a

single resultant, the line of action of which is perpendicular to the

shortest distance between the lines AP, PC, and also to that between

AP, PC.
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89. Three equal spheres are placed in contact on a smooth hori-

zo&tal table, and a fourth equal sphere is placed upon them, and then a

cone of semi-vertical angle a is placed chet the pile 'of spheres. Prove

that the cone will be lifted if its’ weight is less than -7= tan a of the
Vs

weight of a sphere.**

40.

A cylindrical shell, without a bottom, stands on a horizolhtal

plane, and two smooth spheres are placed within it, whose diameters are

each less whilst their sum is greater than that of the interior surface of

the shell : shew that the cylinder will not upset ^f the ratio of its weight

to the weight of the upper sphere be greater than 2c ~ a » fr : c, where

a, h, c are the radii of the si^heres and cylinder.
.

41.

Three spheres of radius c are placed on a smooth, horizontal

table so that their points of contact with it are at the angular points

of an equilateral triangle.-. A fourth sphere of radius a and weight W
touches the table and each of the other spheresi An elastic string of

natural length 27rc and modulus of elasticity /* is placed symmetrically

round the first three spheres. If the fourth sphere is just on the point of

ascending, shew that 2irc W=*27ij>

(

a - c).
*

42.

A uniform rod, length c and weight W is suspended from a fixed

point by two equal elastic strings, the natural length of each being c and

the modulus w. A particle of weight IV is placed on the rod at a distance

X from its middle point, and when the system is in equilibrium the rod

makes .an angle a with the vertical. If d,
<f>

are the angles the strings

make with the vertical, prove'that

X _ sin ~ - 2 cot asin 6 sin
<f> __

sin d ~ sin 0
c ^ sin -f 0)

~ sin a ’

and obtain another equation cbnnecting 9 and </>.

43.

A l|imina .in the form of an isosceles triangle of vertical angle a

rests with its plane verticc^ and its two equal sides each in contact with a

smooth peg, the pegs being in a horizontal line distant c apart: prove

that the axis of the triangle is vertical or makes with it the angle

oos^^ (h sin afSc). h is the length of the axis of the triangle.

44« Two strings of the same length have each of their ends fixed at

each of two points in the same horizontal plane. A smooth sphere

^
of radius r and weight W is supported ujion them at the same distance
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from each of the given points. If the plane in whioh either string lies

makes an angle a with the horizon, prove that the tension of eaSbh

= Jf'd/8r Bin a; a being the distance between the points.

45. A smooth semi-cireular tube is just filled with 2n equal smooth

beads that just fit the tube, and the whole is at rest ip a vertical plane

with the bounding diameter highest. If be the pressure between the

mth^d (m+ l)th beads frolu the top, then

JR-. = Tr.Bin
2n

/ •
**

/Bin — ,

/ . 2/1
*

where W is the weight of a bead.

Hence deduce that when the beads are diminished indefinitely in

size, the pressure between an vo is proportional to their depth below

the top one.

4(j. A smooth rod passes through a smooth ring at the focus of an

ellipse whose major axis is horizontal and rests with its lower end on the

quadrant of the curve '^yhich is furiAcst removed from the focus. ‘ Shew
that its length must be at least + Ja/y/(l + 8e*), where a is the semi-

major axis and e the eccentricity.

. 47. A rigid bar without weight is suspended in a horizontal posi-

tion by means of three equal, vertical, and slightly elastic rods to the

lower ends of which are attached small rings A, B, and C through

which the bar passes. A weight is then attached to tho bar at any

point G. Shew that, assuminf that the extension or compression of an

clastic rod is proportional to the force applied to stretch*or compress it,

and provided the rods remain vertical, the rodht B will be compressed, if

G lie in the longer of the two arms AB^ BC^ and be at a distance fromB
greater tlian {AB^+BC^I{AB ^BC).

48. A number n of equal smooth sphg:e3 of weight W and radius

r is placed within a hollow vertical cylinder of radius a, less than 2/*,

open at both ends and resting on a horizontal plane. Prove that the

least value of the weight ir of the cylinder in^ order that if may not

be upset by the balls is given by

aW*=(n-l) (a-r)W or aW' n (a - r) fV,

according 4s n is o^d or even,

49. Four equal smooth spherical balls of dBSlius a Are piled mpi

within a hollow sphere which is the largest whioh can retain them in

mutual contact, shew that its radius .is a (1 + 2^11).
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501 A set of equal frictionless cylinders, tied together by a fine string

izK a bundle '^vhose cross section is an equilateral triangle, lies on a

horizontal plane. Prove that if W be tlas total weight of the bundle and

n the number of cylinders in a side of the triangle, the tension of the

string cannot be less than 4^
n is an even or an odd number, and that these values will occur when
there are no pressures between the cylinders in any horizontal row above

the lowest.

51. A quadrilateral ABCD has the sides ABy BC equal and the

angles DABy ABC right angles, but AB and CD are not in the same plane.

If forces acting along the four sides can be reduced to a couple, its axis

will make with AB an angle

CD'^-AB'^

52, Forces act along the edges BCy CAy ABy OA, OBy OC of a finite

tetrahedron, represented in magnitude by Xj5(7, VCM, vABy X'OA, f/fOBy

v'OC respectively. Prove that they will be equivalent to a couple, if

X' + A*
“ *'= it*' + *» - X= !»' + X - /I. i= 0.

«

53. Prove that the axis of the resultant of two given wrenches

and (JR^^y the axes of which are inclined to each other at an angle 9,

intersects the shortest distance
(
20

)
between their axes at a point

the distance of which from the middle point is



CHAPTER HI.

STATICS OF CONSTEAINED BODIES, ETC.

72. The conlitions of equilibrium which we have
proved in the last Chapter apply to any rigid bodies what-
soever. If however the body considered be a cmstrained
one, i.e, one that is not free to move in every way, as for

instance on^ that can only turn about a fixed axis, we
can obtain conditions of equilibrium which do not involve
the forces of constraint.

73. Prop. If a rigid body under the action of a syst&ni

of copUmarforces, have one point in the plane <jf theforces

fixed, it is a necessary and suficient condition of equili-

brium that the algebraical sum of the moments aibout the

fixed point of the forces, excluding i,he force of constraint,

be zero.

For the force of constraint acts through the fixed point

A, and therefore when there is equilibriiim, the resultant

of the remaining forces must act through A. ^Sut the

algebraical sum of the njbp ots of theKe remaining forces

about any point is equal to uiie moment of their resultant,

and therefore that about A vanishes. The condition is

therefore a necessary one.

It is also sufikimt For if it hold, it can be shewn^as
in Art. 52 that A .being a fixed point, the body is in equi-

librium.

‘ a 7
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^
Sx 1. A nnilbnn rod which is 13 feet long and whidi weic^ 17 lbs.

can turn freely about a point in it, and the rod is in equilibrium when a
weight of 7 lbs. is hung at one end. How far from that end is the point

ajiout which it can turn f Aim. 4 ft* 3 in.

E:it. 3. ABQD is a square : a force of 1 lb. acts from A to B, one of

4 lbs. from B to (7, and one of 16 lbs. from D to C : if the centre of the

square is fixed, find the force which, acting along DA, will maiptain

e||flibrium. Atm, 10 lbs.

Ex. 8. ABCD is a square, of which the point A is fixed: a force

of 3 lbs. acts along AD, one of 6 lbs. along AD, one of 10 lbs. along DD,
and one of 3 lbs. along DC7, find the force along DC which will maintain

equilibrium. Ana, (5«y2+3)Ibs.

Ex. 4. A lever ABC, with a fulcrum D, one-third of its length from

A, is divided into equal parts in D, D, and F, At C7, D, and D, forces of

12 lbs., 8 lbs., and 6 lbs. respectively act vertically downwards, and at E
a force of 16 lbs. acts vertically upwards. What force applied to A will

cause equilibrium? ^ Atm, 31} lbs.

Ex 5. A weightless lamina in the shape of a regular hexagon

ABCDEFf is suspended from the middle point of AD : shew that it Wxll

be in equilibrium with the side AD horizontal, if weights of 3 lbs., 7 lbs.,

8 lbs. and 6 lbs. are hung at C, D, D, and F respectively.

74. Prop. If two points of a rigid body be fixed, so

that it can only turn about the line joining them, it is a
necessary and sufficient condition of equilibrium that the

algebraical sum of the moments of the forces, excluding

those of constraint, about the fixed Itm, be zero.

If there is equilibrium, the algebraical sum of the

moments of all the forces about any line is zero, and
the moment* of 4he force of constraint at each of the fixed

points about the line joining them is zero : therefore the

sum of the mome^its of the relhaining forces, excluding

those of constraint, about this line, is zero. It is therefore

a necessary condition.

It can be proved as in Art. 54 that when the alge*

braical sum of the moments about any line is zero, there

is equilibrium provided two points in the line be fixed.

The condition is therefore sufficient
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78*. Prop. 1/ one point of a rigid body hefixed^

neoeseary and sufficient cojtditione of equilibrium are, iJwd

the algebraiM sum of the moments of^ forces about ea^
of three lines through the fixed point, but not in the same
plane, be zero. •

It can be shewn,^as in the last pi

conditions are necessary.

It can be shewn, as in Art. 55, that

76. To obtain the forces of cons

points in any of the cases considered

propositions, we have only to apply t .__ ^
ditions of equilibrium found in Chapter II.

77. As we shall ^iten have to consider the case of bodies, such as

rods, which are connected by means of hinges or joints, it will be well to

consider what a hinge is. We shall consider sniooth hinges only.

The connection may be supposed to be uiade in several ways. A point

of one tody m^ be connected with one of the other body by a very short

string. Or one body may end in a very small hall or pwot, which works

in a corresponding small socket or ring in the other body, so that there is

contact at only one point. Or we may suppose each body to end in a

small ball, which works in a corresponding socket of a small separate

body. In each of these cases there is no restriction on either body, except

that the two ends must be in contact ; the action on each at the common
point must pass through this point, but will adapt itself in magnitude and
direction so as to mamtain equilibrium, if possible. .

If three or more bodies are connected by one joint, we may suppose

the connection to be made by each having a very short string attached to

il, and the strings to be knotted together. Or we may suppose each to

end in a small smooth ball, which works in a cbrresponding socket in a

small separate body. ^
*»

^
.

78. In. the constructioxi of materials it is often

desirable to ascertain the internal forces between (me
portion of a body and the adjacent portion. When ail

these are known, we are able to adapt the strength* of
each part to the force it has to sustain. For instanoe,

if we know that the tension at one point of a chain is •

• '
*

7-2
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airways half that at another, the thickness of the chain

at the former point need only be half that at the latter

;

*a saving in material and in weight is thus effected.

We have learnt that when a body is in equilibrium,

the forces exerted on any portion of it by the adjacent

portions counteract the remaining ffbrces acting on the

portion in question. As, however, there is an infiiiite

number of systems of forces, each of which counteracts

a given system, we cannot as a rule determine which
system is the one actually exerted, without going beyond
the limits of Elementary Statics. If, for instance, a
rope composed of several fibres be taut, though we may
know the tension of tKe rope itself, i.e. the sum of the

tensions of the different fibres, we cannot say how it is

distributed among them. This can only be ascertained

when the elasticity of each fibre is kno^/n.

When a beam is merely stretched, i.e. when the ex-

ternal forces all act alo'ng it, the only internal .forces called

into play will be between particles arranged in lines along
the beam. If then the beam be supposed to consist of

two parts A and B, the action of B on A will be the sum
of the forces exerted by particles of B oh the adjacent

particles of A, all such forces being in the same direction

along the beam. Thi^ action is equal to .the resultant of

the forefes acting on the portion A, and which are also

external to the beam. It is clear that the greater this

action becomes, the more likely is the beam to be pulled

asunder at the point of junction of A and B
;
the action

therefore measures .the tendency of the beam to break at

that point.
^ *

79. When the external forces on the beam are not all

along it, the action of one portion on another is not so

simple as in the above case. Take the following case.

Let ABOD be a rectangu lar beam which is firmly fixed at

the end AB in a vice
;
along DC let a force S be apjdied:

it will of course be perpendicular to the beam. Consider
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the equilibrium of the portion CDPQ, where FQ is an
imaginary section perpendicular to the beam’s length.

*

The forces in action are S and the innumerable forces

due to A£QF, acting at every point of the section PQ.

Ftg.62

Let the latter be resolved along PQ and at right angles to

it : the sum of the former components must be equal and
opposite to S, and will with it form a couple. The com-
ponents perpendicular to PQ must therefore be equivalent
to a couple, cqua\ and opposite in sign to the former.

This shews that the forces nearP must 6e in the direction

PA, and those near Q in the •opposite direction: and
therefore that the teYidency of S is to stretch the fibres

near P and crush those near Q. It must follow too, that

the magnitudes of the components perpendicular to QP
depend on the moment of JS about Q, and not on the
magnitude of S simply. Hence the greater the moment
of S about Q the more likely are the fibres along PQ to

give way and the rod to bend at PQ,

Since PQ is supposed smalj. compared with QO, the
numerical sum of the forces along PQ must be very much
greater than S, i.e. a force is far more likely to bend a
rod, when applied at right angles to it, than to pull it

asunder when applied along it.
^

Similar reasoning wJU r^ply to a b^am under the action

of any system of forces. \\ e can shew that the tendency
to hend at any» point is measured by the algebraical sum
of the moments about that point, of the forces external to

the rod and acting on one of the parts into which 4^be

beam is divided by the point. This tmdency to hend is

also termed the heming moment
^
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Ex. 1. A light beam is supported in a horizontal position at its ends,

and a weight to is hang from its middle point. Find the bending moment
at a point distant x from one end. * Arv* Jiox.

Ex. 2. If a heavy uniform rod be supported at its middle point, shew

that the bending foment at any point varies as the square of its distance

from the nearer end.
. o

Ex. 8. «, A uniform rod AB of weight to and length a is supported'in a

horizontal position at A and B ; from a point distant x from A a weight

to' hangs : hnd the bending moment at a point distant y from A,

I8<r,

y (®~y)
. / T •

Ex. 4. A uniform rod of weight to and length a, can turn freely about

a hinge at one end, and rests with its other end against a smooth vertical

well, distant h from the hinje. Prove that the^ bending moment at a

point whose distances from the two ends are Xf y, respectively, is ^wxyharK

Ex. 5. A uniform rod of length a rests horizontally op two pegs, one

at one end of the rod, find where the other peg must be placed so that

the bending moment at a point distant x from the first peg may be zero.

Alts, a^l(2a - x) from the first peg.

80. Wl\en each of the bodies forming a system in

equilibrium is acted, on by forces that reduce to three,

the problem of finding the position of each of the bodies
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or of ascertaining the different forces, can often be easily

solved by constructing a iSeries of triangles each of whiw
is the trimgle offorces corresponding to one of the bodies.

For instance, let us consider the case^of a number of par-

ticles of equal nvieight fastened at intervals along a weight-

less string, the ends of which are attached lb fixed points.

Let -4, B, C, D &c. be the positions of the particles, when
in equilibrium. Any particle, B for instance, isrkept in

equilibrium by three forces, its weight vertically down-
wards, and the tensions of the strings BAy BG. Draw a
triangle 06a, having its sides 6a, aO, 06 respectively

parallel to the lines of action of these forces : then by the

triangle of forces these lines are* proportional to the

forces, to whose directions they are parallel: iA weight
of B : tension ofAB : tension of BG=^ab : aO : Ob, Pro-

duce ab downwards, and mark off be, cd, de &c., each equal

to a6
;
join Oc, Od, Oe &c. Then 06, 6c represent in every

way the tension of JSO, on C, and the weight of 0 respect-

ively, so that cO must represent the tension* of CD,
^milarly dO represents tl.«' tension ofDE, eO that of EF,
and so on.

Draw OJf perpendicular to a6c : then the tangents of

the.angles that aO, 60, cO &c. make with the honzon are

aM m ^ _Me
OM’ OM' OM' VM'
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hence the tangents of the angles which the strings make
with the horizon form an arithmetic series. Also tho

horizontal resolved part of the tension of each string is

represented by OMy and is therefore the same*for all.

Such a figure which is drawn to enable us to solve

the problem is called a Force-Diagram.

The above results can be obtained very easily by eqtlat-

ing to zero the algebraical sums of the resolvea parts in a
^

horizontal and vertical direction of the forces that act on
each particle separately.

81. This ' Graphic ’ method can be applied to prove
the following important proposition.

Prop. Ifa weightless string be stretched across a smooth

surface, the tension is everywhere the same.

Let ABCD &c. be the string : theii any small portion

of it AB is* kept in equilibrium by the tensions at itse'nds^

and the resultant of the pressures of the surface on it:

as the pressures along AB all act along the normals to
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the sui&ce at the corresponding points, their resultant’s

direction must lie somewhere between the normals at A
and JB.

*

*

Draw Oa, Ob, Oc, Od, Oe &c. parallel to the tensions at

A, G,D &c. respectively : and also aft, 6c. cd, &c. parallel

to the resultants dt the pressures on AB, BG, CD &c.

Then by the triangle of forces, each line represents the

magnitude of the force to whose ‘direction it is parallel.

Since the resultant pressure on AB has a direction be-

tween the normals at A and B, and these ultimately, when
AB is taken indefinitely small, make indefinitely small

angles with one anpther, aft makes with the normals at A
and B very small angles, i.e. makes with Oa, Ob, which
are parallel to the tangents at A, Ji, angW ultimately

equal to right angles. Hence the difference between Oa,

Ob must be of the second order of small quantities,

similarly those between Oh and Oc, Oc and Od &c. are

of the second order, i.e. Oa, Oft, Oc &c. and the tensions

they represent are all equal.

IliLUSTBATIVE EXAMPLES.

Ex. 1. OA, AB are two uniform o^ams loosdy jointed at A, the former

being moveable about a hinge at 0. A string attached to JB passes over a

fixed smooth pully and supports a weight P. If in the position of equili-

brium the bemns are equally inclined to the vertic^, the string will make

an angle cos-^ with the vertical, where W, W* are the wei^ts

of tlie beams. *
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Let a be the inolination of either of the beams to the vertical, and $

that of the string.

Bebolve the teifsion of the string (P) at S *into two forces P cos 0

\ertioally, and P sin 0 horizontally.

Let 2a, 2h be the respective lengths of OA^ AB,
,

From the equilibrium of both rods together by taking moments
about 0, we have

TTa sin a+ W' {2a sin a+ 6 sin a) - P cos 0 {2a sin a+ 2b sin a)

, +PBin ^ (2bcoBtt-2acosa)=0...(l).

Taking moments about*^ for the equilibrium of AB

}V*b sin a+P sin d . 2b cos a - P cos ^ . 2b sin a= 0 (2).

Subtracting

Wa Bin a+2Wa Bin a-2PaBin (^+a) = 0,

or (Tr+2TF)Bina=2Psin (^ + a) (8),

from (2)
‘

c TT sin a=2P sin (a- 8) (4).

Adding equations (8) and (4) we have

{W+ SW) sin a=:4PBin a cos 8,
'

^ . .\cob0={W+SW)IAP

If the stresses at 0 and A be resolved horizontally and vertioSiUy, as

shewn in the ^nre, we can determine them as follows

:
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Besolving horissontally and veriioally for the equilibrium of OA

(6)/
r+y-Tr=o (6).

Besolving horizontally and vertically fqr AB^

Jr+Psin^=0 (7),

• V+ir-/>cos»=o (8).

Equations (6), (6), (7) and (8) completely determine X, T, X' and T.

Ex. 2. An equilateral pentagon consisting of five freely-jointed rods

is hung up with one side horizontal ; shew that the inclination (^) of

either of the upper rods to the vertical is given by the equation

sin d+ 6 sin®d+ 8 sin^d - 8 sin^d- J.

Let AB ho the fixed rod. Let ^ be the inclination of CD and DB to

the vertical. ^

*

I

(The rpds are drawn separate to moke the figure clearer.)

Let W be the w£ght of each rod, 2a its length.

Let the stresses on the different rods at the joints be resolved horizon-

tally and vertically : the magnitude of these stresses are indicated in Ihe

figure. The stress at D is entirely horizontal, as the ro4d CDf DJ^ are

cfymnietrical with respect to the vertical.
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Frofxtt the equilibrium of AE, resolving horizontally we have

(1)*

Taking moments about A
Wasind+ ya.2a sind~A^2.2ttOosd— 0 (2).

From the eqidlibrium of ED, resolving horizontally

^
(8).

*
Resolving vertically

(4).

Taking moments about E
Wa sin 0 - . 2a cos 0=0 (6).

Substituting from (1), (3) and (4) in (2) and (5),

2A^ cos d=3IF sin d (6).

jr sin 0=2Ai cos 0 (7),

cotd=3cot0 (8).

Since the sum of the horizontal projections of AE, ED, DC, CB is

equal to AB, i

4a sin ^ + 4a sin 0= 2a,

. .V sin ^ + sin 0= 4 (9).

By eliminating (0) between (8) and (9) wo obtained tht required result.

By substituting the value of 0 just obtained in (6), we determine

and by resolving vertically for the equilibrium of AE, we obtain another

equation which determines

The stresses at the angular points are thus completely determined.

Ez. 3. Six equal heavy rods freely jointed at the ends form a regular

hexagon ADCDEF, which when hung up by the point A is kept from

alterizfg its shape by two light rodb BF, CE. Prove that the thrusts of

the rods BF, CE are as 5 to 1, and find their magnitudes.

We shall suppose that there is a light pivot at B, to which the three

rods AB, BF, and BC are attached ; and that a similar arrangement is

made at

Let W be the Weigh'^ of each rod, 2a its length.

Since the rods BF, CE are only acted on by the stresses at their ends,

these stresses must be along the rods, i.e. horizontal, ^et them be S and T
respectively.

^ Since the rod BC is acted on by its weight along its length and the

streeses at B and C, these latter forces must also act along BO (Art. 61),

i.e. vertically.
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From symmetiyihe stress atD on CD is horizontal.

Let the stresses resolved horizonteUy and vertically at A, B, C andp
be those dhewn by the figure.

*

From the equilibrium of AB, by it king moments about A,
*

r.*.i^/3 + r,.2o.J^-X,.2o.J=0 (1).

‘

From the equilibrium of the pivot B, resolving horizontally and

vertioallyi *

V (?)

and 1^1=19 (8)" ^
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Stem the eqnilibrimn of BC,

Y,-W~r,=0 (4).

From the equilibrium of the pivot C,

. T=X, (C).

r,=r,..^ (6).

From the equilibrium of CD, '

(7).

y,= H' (8).

By taking moments about G,

r.a. iVS-A',. 2o.4=0 (0).

By Bubstitutiug from the other equations in (1) and (9), we have

Tr.W3 + 2»K.73-S=0,

^3 - 2r=o,'

.V S=5Tr.4V3 = 52’.

Ex. 4. A gipsy’s tripod consists of three uniform straight sticks

freely hinged together at one end. From this common end hangs the

kettle. The other ends of the sticks rest on a, smooth horizontal plane,

and are prevented from slipping by a smooth circular hoop which encloses

them and is :(ixed to the plane. Shew that there cannot be equilibrium

unless the sticks be of equal length ; and if the weights of the sticks be

given (eq^ial or unequal) the bending moment of each will be greatest at

its middle point, will bo independent of its length, and will not be increased

on increasing the weight of the kettle.

Let OA, OB, 00 be the three rods, P, Q, P their respective weights

acting at their middle points. Let .Y, Y, Z be the vertical stresses at A ,

^‘and C7,<and X\ Y', Z' the horizontal stresses.

«

Draw OH vertically downwards.

* The three forces acting on OA, viz. P and the reeultant stresses at 0
and A, must be in one plane (Art. 61) the vertical plane containing OA,

i.e, OAH.

X the horizontal stress at A must therefore act along AH \ similarly

1" and act along BH and CH respedtively.
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But these horizontal stresses act along the normals to the oirole ABC,
so that H must be the centre of that circle. The lines HA, HB, Iltj

must therefore bo equal to one another, and also 0^1, OB, OC to one

another. .

Let 2/ be the length of each >udy 0 its inclination to the horizon.

Taking moments about 0 for he equihbrmm of OA, we have

A' 2lcoa PI COB 6 - X' ,2lsmd=iO

2A-P-2A'tan^=0.

The bendmg moment at a point on OA distant x from A

« ® 9 00^$
saXx cos $ - X'x sin ^

/ g
cos ^=a— {2lx - a? ),

This is dearly a maximum, when i.e. the bendmg moment is

greatest at the middle point, where it is equal to ^Pl cos $, or i Pr, where

r is the radius of the hoop, i,e« is independent of I and W,

t
• •
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£x. 5. An elastic band binds together any number of smooth right

f^linders so that each <^linder touches only two others, ihrove that

if lines be drawn from a point parallel ^nd proportional to the pressures

between the cylinders, their extremities will he on a circle.

Let Aa, Bh, Gc^&q be the portion*? of the band m contact with the

cyhnders A', JS', C', <fcc

From any point 0 draw a number of equal straight lines Oa, 0/9, O7,

drc. respectively parallel to the portions of the band zA, aBt bO,

d;e. These lines will therefore represent the tensions along, the

^
^^rresponding portions of the band.

L
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Join op, Py, yd, Ac,

By the triangle of forces, ap represents the resultant action of Aa ^n

the cylinder A\ Similarly py, 'fd, <&c. represent the resultant actions of

the band on the cylinders B', C\ Ao, respectively*

Through p draw pO* parallel to the normal'common to A' and B*i

through y draw yO* parallel to the normal common to and C\ Join

dO\ eO\ &c. By the triangte of forces C/p and yO' represent the pressures

of tlTe cylinders and C' on B'.

Therefore 0*y, yd represent two of the forces on the cylinder C\ so

that 50* must represent the third, which is the pressure due to 7)'.*

Similarly it can be shewn that 0*a, Ac. re2)reseiit the pressures between

the other paiis of cylinders.

Hence fiom O' straight lines O'a, O'p, O'y, Ac. have been drawn

representing in magnitude and direction the pressures between the

cylinders, and their extiamities a, p^ y lie on a circle whose centre is O,

since Oa, OjS, O7, <fec. are all equal.

^The cylinders are not necessarily circular.)

EXAMPLES.*

1. Two uniform heavy rods, each bf length a and jointed together by a

fvmooth hinge, are placed symmetrically over two pegs at a given distance

b apart in a horizontal line
;
prove that in the position of equilibrium

each rod is inclined to the horizon at an angle cos'^

2. Three equal uniform rods, AB^ liC, CT), of the same material and

thiohness, dro jointed at B and C, If they ar^*supported in a horizontal

plane by smooth pegs placed under A H and CD, shew that tHb distance

between either peg and the nearest joint is one-third the length of a

rod.

3. A uniform heavy rod of length 2b and weight W can turn freely

about one end. To this end is attached a string of length <2&), which

supports a sphere of radius a and weight W*, When the system is in

equilibrium with the rod resting dnst the s^fiere, the rod makes an

angle B with the horizontal; shew vhat tan 9 -tan as^Wb/W'a, where

l=a (seca~l), anAZ'^+ ^fis

4. A uniform heavy rod*hangs by light inextensible strings, attached

to its ends, and also to the ends of another uniform rod, which can t«m
about a pivot at its middle point. Prove that, when there is equilibrium,

either the rods or the strings are parallel.

• Q. 8
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5. Proye that the angular points of a funicular polygon, in which

the weights are equal and also tlie horizontal distances between them,

lie on a parabola. «

6. Two rods AC, BC, of equal uniform thickness are jointed at C,

and the ends A ^nd B dre fixed at two points in the same vertical line*

Prove that the direction of the action at the joint C bisects the angle

ACB: and if AB^=^^AC .BC, shew that Ls magnitude is equal to a

quarter of the difference of the weights of the rods.

7. A chain fonned of rods of equal weight jointed together is hung up

by its two ends and rests under the action of gravity. Shew that, if lines

be drawn from a point representing the actions at the hinges, their ends

lie on a straight Kne.

8. A rhombus is formed of four similar uniform rods connected by

smooth hinges at their extremities, and two of these rods rest upon two

SDK^th. pegs in the same horizontal line: determine the position in

whiclix^he rhombus will rest with one of its diagonals vertical.

9. Two uniform rods Alj, AC, of lengths a, 6 respectively, are of the

same material and thickness and smootlily jointed at A. A rigid weight-

less rod of length I is jointed at B to AB and its other end D is fastened

to a smooth ring sliding on AC. The system is hung over a smooth peg

at A : shew that AC makes with the vertical an angle

10. A regular tetrahedron consists of six rigid bars witliout weight.

It is suspended from one angular point, and from the other three equal

weights W are hung : find the strain on each of the horizontal edges.

11. A beam AB of length a and weight w rests horizontally on two

smooth pegs, whose distances from A and B respectively are Ja and :

if from A a weight 6a; is hung, and from 2?, i a;, shew that the bending

moment is greatest at l^e peg next A, and find its magnitude.

12. Two heavy uniform rods AB, BC, weightsP and Q, are connected

by a smooth joint at ij. The ends A and C slide:/ by means of small

smooth rings on two fixed rods each inclined at an angle a to the horizon.

If
ff
and 0 be inclinations of the rods AB, BC respectively to the horizon,

shew that

{P+ Q) tan apsQ cot 0=P cot 0.



STATICS OF CONSTRAINED BODIES, ETC. 115

18. At what distance from the foot of an upright post must a rope of

given length be attached, in order that a given force applied to the othft

end may produce the greatest bending moment at the foot of the post?

14. Four uniform rods AB, BO, CD, DA freely jointed at their ends

so as to form a quadrilateral rest on a smooth horizontal table. They
are connected together by an endless elastic string passing through small

smooth rings at their middle points. Prove that in the position of

equilibrium, the harmonic means of the segments into which each

diagonal is divided by the other are equal.

15. A heavy uniform rod of weight W and lengtli 2a can turn freely

about a hinge at one end ; a ring of weight w, which slides along the rod,

is connected with a point in the same horizontal plane as the hinge, by

means of a string whose length c is equal to the distance between the point

and the hinge. Shew that in the position of equilibrium the angle 0

which the rod makes witli the horizon is given by the equation

2wc cos 26 + Wa cos 6-=0, • ^

16.. Two equal uniform ladders of length I, freely jointed at A, are

connected by a rope PQ and rest equally inclined to it on a smooth hori-

zontal plane; agnan of weight W goes a distance b up one of the ladders:

prove that the tension of the rope is weight of

each ladder, 2c- length of the rope, and AP=AQ—a,

17. AB, BC, CD are three equal rods freely jointed at B and C.

The rods A B, CD rest on two pegs in the same horizontal fine so that BC
is horizontal. If a be the inclination of A B, add p that of the potion at

B to the horizon, prove that 3 tan a tan p=l,

18. Two equal rods can move in a vertical plane about an axis

through their middle points. The lower ends of tbe rods are connected

by a weightless elastic string, and a circle of weight W rests between the

rods above the joint. The radius of the circle and the unstretched
,

length of the string are each equal to half the Igngth of either rod, and
the rods are at right angles when i e' system is in equilibrium ;

prove

that Young’s modules for the string is {^2 - 1). . ,

19. Four equal uniform rods, each of weight’ W, are jointed so as to

form a rhombus ABCD : the system rests on a horizontal plane, with AC
vertical, B, D are connected by a light string ; shew that its tension is

2W tan ipADt and find the actions on the rods at A and C,

8—2
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^
20. *A triangular lamina ABC is moveable in its own plane about a

point in itself: forces act on it along and proportional to BC^ CA^ BA,

Prove that if these do not move the lamina the point must lie in the

straight line which bisects BC and CA,

21. Five ro^s are jointed so as to form a regular pentagon ABODE
and are suspended from A. Two strings conpect C with the middle point

of and D with the middle point of AB. Deteimine their tensions.

22. Seven equal and similar uniform rods AB^ BC, CD, DE, EF, FG,
GA are freely jointed at their extremities and rest in a vertical plane

supported by rings at A and C, which aie capable of sliding on a smooth

horizontal rod: prove that, d, <p, ^ being the angles which BA, AG, GF
make with the vertical, tan 0=^4 tan 0-2 tan 0.

23. Four rods jointed at their extremities form a quadrilateral, which

may be inscrib|id in a circle: if tliey be kept in equilibrium by two strings

joining the opposite angular points, shew that the tension of each string

is inversely proportional to its length, the weights of the rods, being

neglected.

24. A series of particles are knotted on an endless string, forming a

closed polygon, and are in equilibrium under the action of given forces

applied to the particles. Shew that the tensions of the string may bo

represented in direction and magnitude by means of straight lines drawn

from a point 1;o the angular iKiints of the polygon of forces.

26. Three uniform rods A B, BC, CD^ lengths 2c, 2h, 2c, rest symme-
trically on a smooth parabolic arc, lat. rec. = 4a, wliose axis is vertical

and vertex upwards. There are hinges at B and C, and all the rods touch

the parabola. If W he the weight of either slant rod, shew that its pres-

sure against the parabola is W aHI{b[a^ + b^)].

26. Four equal uniform rods are freely jointed at their extremities so

as to form a square, aftd the middle point of one side is joined by three

strings to the middle points of the other three sides.

(1) *tf the square be laid On a smooth table, prdve that the tensions

of two of the strings will be equal : and, given the magnitudes of the

thiee tensions, find the actions at the joints.

(2) If the square be hung up by one comer, prove that the difference

between two pf the tensions will be four times the weight of a rod.
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27. Two equal rods AB, BC^ of length 2a, are connected by a free

hinge at B : the ends A and C are connected by an inextensible string bf

length I : the system is suspend^ from A

:

prove that, in order that the

angle AB makes with the vertical may be the greatest possible, I must be

equal to fa tjs,

28. Six equal and uni^rm heavy rods are hinged together so as to

forA a hexagon : it is placed with one side on a horizontal plane and is

kep*t in the shape of a regular hexagon by means of a string fastened to

the middle points of the two sides adjacent to the base : find the tension

of the string and the stresses at the hinges.

29. A parallelogram formed of four rols of uniform material and

thickness, jointed at their ends, is suspended from one point, which is

connected with the opposite point by a string of such a length that the

figure is rectangular: prove that the tension of the string is half the

weight of the four rods, and that the direction of the stress between the

rods at either of tho joints not connected by the string bisects the angle

between them.

^
•

30. A heavy uniform rod of length 2a turns freely on a pivot at a

point in it, and suspended by a string of length { fastened to the ends of

the rod hangs a bead of equal weight which slides on the string. Prove

that the rod cannot rest in an inclined position unless the distance of

the pivot from the middle point of the rod be less than a^/l.

•

31. A number of equal weightless rods ar^freely jointed and assume

the form of a regular polygon when subjected to a system of etresses at

each joint, all emanating from a point on the circumscribing circle. Shew

that, if from a point radii be diawn ^o represent in magnitude and direc-

tion the stresses in the rods, and a polygon be constructed so that its sides

taken in order represent the system of applied stresses, then the polygon

will be equiangular and described about a parabola, and fuither the

angular points of the polygon wi.l all lie on a hyj^erbola.

32. Two equal beams AB, At , connected by a hinge at A, are placed

in a vertical plane with their extremities B, C resting on a horizontal

plane ; they are kept from falling by strings connecting B and C with

the middle points of the opposite sides ; shew that the ratio of the fenflion

of each string to the weight of each beam is |.^(8cot^^+co8eo’0}, where

$ is the inclination of either beam to the horizon.
,



118 STATICS.

*
33. A trapezium AliCD is formed of four rods joined by hinges at

tUbir extremities: BC, AD are equal, and the framework is suspended by

a string attached to the middle point of *AB, Determine completely th^

stresses at A and D.

^
ltAn=AD=BC=iCD, prove that

the stress at A : the stress at D=^ld : Jl.
ft

34. A number of light rigid rods are loosely jointed together at their

extremities so as to form a closed polygon, and a force applied to each

side peipendicular and proportional to it, their lines of action meeting

in a point
;
prove that, if equilibrium be maintained, the polygon will be

inscribable in a circle, and if S be the point through which the forces

act, 0 the centre of the circumscribed circle, and HO be produced to 8'

so that 88' is bisected in 0, the stress at any angular point of the

polygon will be perpendicular and proportional to the distance of the

point from S\

35. n equal uniform rods, each of weight W' and length 1, are jointed

so as to form symmetrical genetators of a cone whose semi-vertical angle

is a, the joint being at the vertex of the cone. The rods fro placed with

their other ends in contact with the interior of a sphere whose radius is r,

so that the axis ‘of the cone is vertical, and a weight W is hung on it at

the joint. Shew that

and find the action at the jv^int on each rod.

r

36. A fire-screen holder with any number of unequal weightless arms

projects horizontally from a chimney-piece. Shew that, if the ends of

the arms all lie on a circle, the axes of the couples at the hinges all pass

through one point.

37. A regular octal^dron is formed of 12 uniform rods jointed to-

gether at the ends. Along the three diagonals are stretched strings whose

tensions are 7^, 2\. Shew that the thrusts along the rods, joining the

ends of the diagonals the tensions along which are are

Prove also that, if the four diagonals of a cube be treated in a similar

way, equilibrium is not possible unless the tensions are all equal.
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38. Three uniform heavy rods of the same material (lengths 2a, 26,

2c, respectively) hinged together at B and O rest on a vertical circle 8f

radius r, the whole system bein^in one vertical plane, and such that BC
is horizontal. Find the stresses at the hinges, and prove that

(a®cos*^-c2co8*0+&®+2&c)cot •

= (c® cos®^ - a® co*»® ^ + 6®+ 2ab) cot J 0

= (a+ b+c)r,

where d and ^ are the acute angles made with the horizon by AB and

CD respectively.

39. Three equal heavy rods, in the position of the three edges of an

inverted triangular pyramid, are in equilibrium with their lower ends

attached to a joint about which each rod can turn freely, and their upper

ends connected by strings each of longili equal to half that of a rod.

Prove that the tension of a string is to the weight of a rod as 1 : 2^^.

40» A rhombus is formed of four rods of length a, hinged together.

Two opposite rods are supported in a v(>rtieal plane by two smooth pegs

which are sepamted by a horizontal distance h and vertical distance k.

Shew that the product of the horizontal distances of either peg from the

ends of the nearer unsupported rod is i(k^-2(ih + h^), and that there

is no bending moment round a point in either supported rod, whose

distance from its supporting peg is three times the shorter of the distances

of that peg from an unsupported rod. •

•

41. Pour equal uniform rods are jointed freely together so as to

form a rhombus : this is suspended by one of the angular points, and a

sphere of weight equal to twice that of the rhombus is balanced inside

it so as to prevent it from collapsing ; shew that, if the radius of the

sphere be to the length qf a rod in the ratio 5 : 8 the rods will, in

equilibrium, make each an angle It with the vertical.

42. ABCD is a quadrilaterui ^brined by four uniform rods of equal

weight loosely jointed together. If the system be in equilibrium in a

vertical plane with^he rod AB supported in a horizontal position, prove

that 2 tan ^=tan a^^tan j9, where a, p are the angles at A and B, and $

is the inclination of CD to the horizon : also find the stresses at. C and

D, and prove that their directions are inclined to the horizon at the

angles tan~^ i (tan /3 - tan $) and tan-^'j (tan a+ tan $) respectively.
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43. Four equal rods are joined together so as to form a rhombus

JtBCDf lying upon a smooth horizontal plane, and elastic strings AC,

JW of the same substance are stretchdd along tlie diagonals: if a be

the length of a side of the rhombus, and if the natural lengths of the

strings be la and Ja {^2 -
1), find the angles of the rhombus when there

is equilibiium.

44. Seven rods are freely jointed together to form a regjilar

heptagon AliCDEFG, A weightless rigid rod connects BG^ and two

equal strings connect G with I) and B with JK, and the whole system is

suspended by the point A. Find the tension of the strings.

45. A frame ABCD is foimed of four rods each of length a freely

jointed together : it rests with AC vertical and the rods BC, CD in contact

with fixed frictionless supports £, F, in the same horizontal line at a

distance c apait, the joints F, D being kept apart by a rod of length h.

Shew that, when a weight W is placed on the highest point A, it produces

in BI) a thrust of magnitude ,

TF(2ffV- h^)

•
,
6S(la»-6»)i

'

Examine the case when 6= {2aV)i. «

40. A door is moveable about its line of hinges which is inclined at

an angle a to the vertical ; shew that the couple necessary to keep it in a '

position inclined at an angle ^ to its position of equilibrium is propor-

tional to sin a sin jS.

47. Three equal heavy^ods AB,BC, CD are jointed to each other at B
and C and*to fixed points at A and I>, where AD is horizontal and equal

to the length of a rod. Shew that the horizontal couple required to

turn the rod BC through an angle B is BC . W sin 4^, where W is the

weight of each rod.

< 48. The lid ABCD of a cubical box, moveable about hinges at A
and Bt is held at a given angle to the horizon by a horizontal string

connecting C*with a po\nt vertically over A: find the pressure on each

hinge.



CHAPTER IV.

CENTRES OF MASS.

82. We have seen (Art. 50) that the resultant of
two parallel forces, jP, Q, acting at fixed points A, B
respectively, is e pial to their algebraical sum, and acts

along a line parallel to the line of action of either:

also t;hat its line of action cuts AJ5 at a fixed point,

whose position depends solely on the relative magnitude
ofP and Q and not on their direction. So too, if we have
a niimher of parallel forces acting at fixed points, their

resultant is equal to their algebraical sum, and its line of

action is parallel to that of any of them, and passes

through a point whose position depends solely on the

positions of the fixed points and the relative* magnitude
of the forces. For two of the forc<?s are equivalent to

their sum acting parallel to them and through* a fixed

point : this resultant ‘and a third force of the system are

also equivalent to the algebraical sum of the three acting

parallel to them through a fixed point; in this way we
can go on reducing the number of the forces until we
arrive at the final resultant acting through a fixed point.

We shall necessarily arriv it the samS fixed point, what-
ever be the order in whhh we compound the forces:

for if by compounding them in different orders we obtain

two points, at either of which the resultant may act, its

line of action must be the line joining the two points

(Art. 53), which is inconsistent with its being always

parallel to the directions of the’ original forces.
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It is assumed above that the algebraical sum of

the forces is not zero, otherwise, if they are not in equi-

librium, they will not reduce to a single force, but to a
couple.

•

83. Def, The Centre of a number of parallel forces
acting at fixed points, is the point aV which their resultant

always acts, however their direction alters, so long as

their relative magnitudes remain the same.

If the points at which the parallel forces act lie in one

plane, we can find an expression for the distance of the

centre of the forces from any straight line in the plane.

Let ^g, &c. be the points of application of the

parallel forces, Pg, &c., and let C be their centre.

'^(P)

xi X

Let X'X be any straight line in the plane containing the

points of application. Draw A^M^y &c., CM perpen-

dicular to X'X. Let /Tg X be the lengths of* these

perpendiculars, which are reckoned positive or negative

according to the side of the line on which the corresponding

point of application lies.

As the position of C is independent of*the direction of

the forces, it will not be affected by supposing P^, P^, &c. to

act parallel to X'X, Since the algebraical sum of P,, Pj,

&c. acting at C, is the resultant of these parallel forces,

the algebraical sum of the moments of Pj, P,, &c. about
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any point in X'X is equal to the moment of their alge-

braical sum at 0, about the same point in X'X.

Pja!, + P^,+ ... = (P,+P, + ...)S;

. j. + P^,+ . • • _ S(Pj!) ,

P, + P, + ... “2(P)-
As we can find in tins way the distance of the centre

of a number of parallel forces acting at fixed points in one
plane, from two intersecting straight lines in that plane,

its position is completely determined.

84*. When the points of application of the parallel

forces are not in one plane, wo can find an expression for

the distance of the centre from any given plane*

Let -dj, &c. be the points at which the forces P ,

&c. respectively act : let G be the centre. Draw

Mf M

Fig.64,

&c., CM perpendicular- to the given plane; let

be these respective distances iVhich are reckoned positive

or negative accouding to which side of the plane the corre-

sponding points lie. Let X'X be any straight line in the

plane. ,

Since the position of G is independent of the direc-

tion of the forces, it will not be affected by supposing this
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4.

^

direction to be parallel to the plane and at right angles

As the resultant of P^, &c. is their algebraical sum
acting at G, the algebraical sum of the moments of Pj, P,,

&c. about X''X is equal to the moment of their algebraical

sum acting at G about X'X.

P, . A,M, + P, . A,M, + &c. = (P, + P, + . . .)
CM]

PiiCi + Pja?a+&c. = (Pi+ Pg+...) r;

• „ P,a!, + l\x,+ ... l(Px)
- 2(P)

•

When we have found the distance of G from three

planes which have only one point in common, its position

is completely determined

Ex. 1. O is the Interseotion of the diagonals of a square A BCDj whose

side is 1 foot long : And the position of the centre of like parallel forces

acting at At 6’, D and 0,*re&i)ectively propoitional to 4, 3, 4, 6 and 1).

Ans, In I)B^ distant inches from AD, *

Ex. 2. At the angular points B, C of an equilateral triangle, like

parallel forces of 1, 2, and 3 lbs. respectively act : find the distance of their

centre from C. J^ns, ^ . A B.

Ex. 3. At four of tl^e angles of a regular hexagon taken ;n order,

parallel fqrces proportional to 3, - 2, 7 and - 5 act : find the magnitude of

the forces that must act at the remaining angleq, in order that the centre

of the six parallel forces may be the centre of the hexagon. Ans. 6, - 1.

85. Def. Let A
,,

A^, &c. be a number of particles

of masses m,, Wg, &c. respectively
;
then if a point

be taken in A,A„ so that
* * t/

this point is called the Centre of Mass 6r the Centre of
Inertia of the particles A^ and A^. The centre of mass of

Aj and a particle of maSs situate at is the
^

centre of mass of A ^^A^ and A^, That of A^ and a particle

of mass (Wj 4- situate at the centre of mass of
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and -d, is the centre of mass of A^, A^ and A^.

Oontinuing this process we obtain the centre of mass of

any number of particles.

From this definition of the centre of mass of a number
of particles it is clear that its position is the<>same as that

of the centre of a number of like parallel forces acting one
on each of the particles, each force being proportional to

the mass of the particle on which it acts. Hence if the

particles of masses be at distances re-

• spectively from a given plane, the distance of their centre

of mass irom that plane is 2 {mx)l^ (m); or, in other words,

the distance from a given plane of the centre of mass of a
number of particles is obtained by multiplying the mass of

.each by its distance from the plane, and dividing the alge-

braical sum of the products by that of the masses.

If the particle^ are not fixed in position, but move
so that the configuration formed by them is unaltered in

shape, their centre of mass will be a point moving with
the configuration, but occupying a position fixed relatively*

to it,

De/, The product of a mass into the distance of its

centre of maCss from any plane or line is termed its Moment
about that plane or line.

'

.
We see from the above, that the aigehraical sum of the

moments of a number of masses about any plane^ and if
they are copUmar, about any line, is equal to the moment of
the whole mass collected at the centre of mass about the same
plane or line.

86. Let us suppose thai the above system is acted on

by a number of like pardllel fi^rces, one* om each particle, their

magnitudes being proporth .liid to the masses of the par-

ticles on which 'they respectively act : now, no matter how
much the direction of the forces varies, or to what extent

the particles move, so long as the configuration formed bv
them remains the same, the resultant of these forces will

always pass through the centre of mass, which is fixed
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relatively to the configuration. Since the magnitiitte of a
particle’s weight is proportional to its mass and its dfrec«

tion is towards the earth’s centfe, the weights of a system
of ^rticles which are not far from one another in com-
parison witl^ their distance from the earth’s centre, are

forces approximately parallel, and also proportional to the

masses of the particles on which they act. The linf> of

action of their resultant then will approximately always

pass through a point fixed relatively to the configuration

formed by the particles, if that configuration does not alter,

though it move as a whole. This point, which we have
called the centre of mass of the system, is on this account

often called its Centre of Gravity.

We may define the Centre of Gravity thus: Tlie

Centre of Gravity of a body is the point, fixed relatively to

the body and through which the resultant of the weights of
the particles composing it always acts, however the body
move, provided it always moves as if it were rigid.

Strictly speaking, there is not of necessity any such point

for every body, because the weights of the particles com-
posing the body are not accurately parallel, but if they are

very nearly so their resultant will pass very close to the

centre of mass, if it does not pass through it.

It is not assumed in the definition of the centre of

gravity that the body is a rigid one: any body whatsoever,
*

a flexible string for instance, or a mass of liquid, will ha^e
a centre of gravity corresponding to every definite shape of

the body, though its position in the body will generally

alter with an alteration of the body’s shape.

If a body be such that the action of gravity on it can
always be r^uced to a single force passing through a point

fixed relatively to •the body, whatever be its position re-

latively to the earth, the body is termed a Centrobario

Body, and the point its Centre of Gravity, in a stricter sense

than is usually attached to the term.

87. Def When a substance is such that the mass
of any volume of it is proportional to that volume, it

. V
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13 saidfto be Komogeneous, or of uniform density: when
this'^is not the case, it is said to be heterogeneous, or of

variable density,

When a substance is homogeneous its density is mea-
sured by the numerical measure of the mass in a unit of

volume.

When the density of a substance varies, the average

density of any volume is measured by the ratio of the

numerical measure of its mass to that of its volume. The
density at any point is measured by the limit of the

average density of an indefinitely small volume containing

the point in question.

88. Prop. Having given the centres of mass ofa body
and ofme part of it, to find that of the remaining part.

Let m^, bo the masses of the two parts forming the

body„ 0^ their respective centres- of mass. Join

c, ^
Fig 6B •

and take C between (7, and G^, such that , CC^ = 7/t, . CC^ :

then G is the centre of mass of the whole.

Since (7,, C, G^ are connected in this way, it is perfectly

clear that if and G arc given, G^ is the point obtained

by producing G^G to a distance = {mjm^) . GG^,

Gor, In a similar way we can obtain the centre of

one part of a system of parallel forces when the centres of

the whole system and of the remaining part are known.

89. Prop. If the mass of each of a series ofparticles

he multiplied by the square of its distai^ce from any given

point, the sum of the produ> so obtained is equal to the

sum of the preiducts obtained by multiplying the mass

of each particle by the square of its distance from the

centre of mass of all the particles, together with the

product of the whole mass into the square of the distance

of the given pointfrom the centre of mass.
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Let A^y &c., A^ be n particles of mass ;•

Set G be their centre of mass, and 0 any point what-
soever. • «

Join GO^ and draw A^M^y &c. iierpendicular

,
to GO.

Then AO^ = A -h OG^ - 20G . GM.

A

C
'

0 M
Ffg. 66

The — sign in this equation refers to the above figure

where M and 0 are on the same side of G, but if we
agree that GM shall }.e reckoned positive wlien M is on
the same side of G as 0, and negative when pii the other,

the equation holds for all figures.

Hence

^{rn.A 0*) = 2 (/7/ . A G^) + IS {m . i)G^) - 2!^ {m.OG. GM)
= t {ni . A (?0 + OG^ . S (m) ^20G.S {m . GM).

But since G is the centre of mass of the n particles,

2 {m.GM) is zero (Art. 85), and we Jiave

^{m.A f/) *= 2 (m . AG*) -f OG^

.

2 {in).

(In tlie above proof, it is not assumed that A^, A.^, &c.

are in one plane.)

Cor. If the nfrass of each of a series of particles be
multiplied by the square of its distance from any given
point, the product so obtained is least When the given
point is the centre of mass of the system of particles.

90. We shall now investigate the
.
positions of the

centres of mass of some of the simpler geometric figures.
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' Prop. Tf a body consists entirely of pairs ofparticles^
such that those forming ea^h pair are of equal mass and
dt equal distances from^ hut on opposite sides of a certain

point, that point is the centre of mass of the body.

For this point is clearly the centre of mass of each pair,

and therefore of all tha pairs, i.e. of the whole body.

Hence the centre of mass of a thin rod, uniform in

density and sectional area, is its middle point : that of a
lamina, uniform in thickness and density, and in shape,

a circle, ellipse, or parallelogram, is its centre of figure.

Also the centre of figure of a homogeneous sphere, ellip-

soid, or parallelepiped is its centre of mass. The centres

of mass of many other figures can be thus dc^termined.

91. Prop. If a body consists entirely ofpairs ofpar-
ticles, thoseforming euchpair being of equal 'mass and such

that Ihe middle point of the line^joining them is on a
certain straight line or plane, the centre of mass of the

body lies in that straight hue or plane.

For this straight line or plane contains the centre of

mass of e\ery pair of particles and therefore that of the

whole body

Hence any straight line or plaije which ".divides a
homogeneous body symmetiically, contains its centre of

mass. For instance the centre of mass of the volume of

surface of a riglit circular cone, with its base at right

angles to its axis, lies in the axis: that of a segment of

an ellipse or parabola lies in the diameter conjugate to the

chord cutting off the segment.

When we speak of the centre ot nass of a wiface or plane figure,

we suppose the figure to be of very sn a/l uniform thickness. Similarly

a line or curve is supposed to be of veiy small uniform sectional area.

92. To find the centre of mass of a plane triangle.

Let ABC be the triangle. Bisect BC in D, and join

AD. Draw hdc parallel to BC, meeting AD in d.

• G. • '9
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« , then hd : BD = Ad : AD ^dc : DC
;

/. bd = dc.

Similarly it may be shewn that AD bisects any other
line parallel to BG, Hence the triangle- consists entirely of

pairs of particles, those forming each pair being of equal
mass, and such that AD bisects the line joining them : the
centre of mass of the triangle is therefore in AD, (Art. 91.)

Bisect XC in j&,,and join BE meeting AD in G,

Then we can prove as before that the centre of mass
of the triangle lies in BE, as well as in AD: it must
therefore be 0, their point of intersection.

Join DE: since D, E are the middle points of BCf, A C
respectively, DE is parallel to AB, and

DE=\AB)
AG: = : i)J?= 2 : 1

;

/. AG-=^IAD,

Hence the centre of mass of a triangle is obtained by
joining the vertex with the middle point of the base and
taking the point two-thirds the way down this line from
the vertex.
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The centre of mass of the triangle ABG coincides with
that of three equal particles placed at B, and G, For
the centre* of mass of those at B and G is at J9, half-way

between them : and that of all three will be in AD at a
point g, such that

*

Dg : gA^l : 2, or Dg — ^DA.

Hence 0 and g are the same point

Gor. By drawing an indefinitely large number of

lines parallel to BG and at equal distances from one an-

other, the triangle ABG may be divided into an infinitely

large number of indefinitely narrow strips, of equal
breadth, and having their centres of mass in AD. iNow
the mass of each strip is proportional to its area, i.e. to

its length, and therefore to its distance from A measured
along AD : also for the purpose of finding th§ centre of

mass •of the whole we may suppose the mass of each
portion collected at its centre of mass. The* problem
therefore of finding the centre of mass of all these strips,

i.e. of the triangle, is the same as that of finding the
centre of mass of an infinite number of masses arranged
along AD at equal, but indefinitely small distances, each
mass being proportional to its distance from A, The
centre of mass in the latter case, then, is at a distance

from A equal to two-thirds of A D. ’Hence the centre of

mass of a thin rod, of uniform sectional area, but such
that the density at any point varies as its distance from
one end, is distant from that end two-thirds the length of

the rod.

Also the centre of mass of the portion of a paraboloid

of revolution, cut off by a plar o perpendicular to the axis,

is at a distance from the vert» x equal to two-thirds the

length of the axi% cut off.

For let the paraboloid be divided into an indefinitely

large mumbcr of thin slices of equal thickness by plants

perpendicular to the axis. Then the volume of any^ slice

18 proportional ultimately to the square of its radius, i.e. to

•. • 9—2
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its distance from the vertex, whence the result pven above
follows at once by the preceding^ corollary.

Ex. 1. Weights of 1, 4, 2, 3 lbs. are placed at the comers taken in

order of a parallelogram ABCD

;

a weight of 10 lbs. is also placed at 0,

the intersection of diagonals
;
find the position of their centre of mass.

Ans, If K be .the middle point of BC^ the point required is in OF, at

a distance from 0 equal to one-tenth of OE.

Ex. 2. A line AB is bisected in B in Og, ( g/? in Oj, and so on

P
ad infinitum^ and weights equal to P, - , &c. are placed at the points

^11 C'2> Prove that the distance of the centre of mass of the

whole system from B is equal to one-third of AB,

Ex. 3. Find the centre of mass of seven equal particles placed at

the angular points of a regular octagon.

An$, If A be the unoccupied angular point and O the centre of the

octagon, the rcquiicd point is in AO produced, at a distance from 0 equal

tofAO.

Ex. 4. A square ABCB is divided into four equal triangles, by its

diagonals, which intersect in 0 : if the triangle OA B be removed, find O,

the centre of mass of the remaining three. Prove that if E be the

middle point of CO, G is in OE, and OG = ^AP.

Ex. 3. ifhe sides of,a square ABCD are bisected, and the points of

bisection of the opposite iiidcs joined. If the small square, having the

angle A, be removed, find G the centre of mass of the remaining three.

A H8, G is in AC and CG = A C,

Ex. 6. Out of a circular lamina of radius r is cut a circle, whose

diameter coincides with a radius of the lamina : find the position of the

centre of mass of the remainder.

Atu. The c.^ M. is a distance from the centre of the lamina equal

to \r.

I

Ex. 7. A figure consists of a square and an isosceles triangle/ whose

base is one of the sides of the square: if the side of the square be 6 inches,

add the height of the triangle be 6 inches, find the centre of mass«of the

figure.

Ans. Wilhin the square, f of an inch from the base of the triangle.
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Ex. 8. A uniform rod, 18 inches long, is bent so that the two part|,

8 and 10 inches long* respectively, are at right angles to one another.

Find the distance between the centres of mass of the new shape and the

original. Am. V ^ inches.

Ex. 9. Equal weights are placed at n - 2 of the corners of a regular

7t-aided polygon : find theii^centie of mass.

*Am. If At B be the unoccupied comers, € the middle point of AB,
and 0 the centre of the polygon, the centre of mass is in CO produced at

2
a distance from 0 equal to , OC.n-

2

Ex. 10. Having given the position of tlie centre of mass of two par-

ticles A and B, and also that of A and C, find that of B and C. *

Am. Join B with £, the c.m. of A and C, and C with 7), the o.m. of

A and B; let these two lines meet in G. The point where AG meets BC
ib the C.M. of It and C.

Ex- 11* Assuming that the pressure on an indefmifbly small area

below the surface of a liquid is perpendicular to the area and vanes as

the area and itjj) depth below the surface conjointly : find where the re-

sultant pressure on a parallelogram, one of whose bides is in the surface

of the liquid, acts. *

Ans. At a point whose depth below the surface is two-thirds that of

the lowest side.

•

Ex. 12. With the same assumption as in the last example, shew that

the resultant pressure on any plane area below the surface of.a liquid is

proportional to the area and the depth of its centre of mass below the

surface conjointly.

Ex. ll. Fiiidthecentreof mass of a quadrilateral, two of whose sides

are parallel to one another, and respectively 6 rnches and 14 inches long,

whrle the other sides are each 8 inches long.

Atu. In the line joining the points Sf the two parallel sides,

at a distance of }f inches from tne longer side.

Ex. 14. Find also the centre of mass of the perimeter of the above

quadrilateral. •

Am. In the line joining the middle points of the parallel sides, at a

distance from the greater equal to V inches.
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« 98. To find the centre ofmass ofa triangular pyramid.
t

Let ABCD be the pyramfd. Bisect BG in E, join

AE^ and take -ffin it, so that

• AH^iAE.

Lot abc be a section of the pyramid, made by a plane

parallel to ABC^ and let ae be its intersection with the

plane ADE.

Since the planes ABC, abc are parallel, be, BG are also

parallel

;

be : ec = BE : EG ;

/. be'—ec,

and e is the middle point of be.

Similarly ae, AE are parallel, and

ah'\ ae =AH : AE =2:3,
i.e. h is the centre of mass of the triangle abc.

Hence, if we shppose the pj^amid divided into an in-

finitely large number of indefinitely thin triangular slices

made by planes parallel to ABC, the centre of mass of

each slice will lie in the line DH, which must therefore

contain the centre of mass of the pyramid. Join DE,
and take K in it so that DK= ^DE) join AK intersecting

DH in 0^
' Then, as before, we can shew that the centre of
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mass of the pyramid licys in AK, as well -as in I)E
;
th^

point of intersection O o{ these two lines must therefore

be the required centre of mass. Join HK,
AH = lAE, and DK = f

HK is parallel to AD,

ana : GH^AfD : HK^AE : HE^^ : 1,

.*. DG^^IDH.
Hence the centre of mass of the pyramid is in the line

drawn from any vertex to the centre of mass of the op-

posite face, and is such that its distance from the former

point is three times its distance from the latter.

Cor. The centre of mass of a triangular pyramid
coincides with that cffour particles of eqml mass placed
at its angular points.

For the centre of mass of the particles ai A, B and
C is *H, and therefore that of the four is in 3D, and at a
distance from D equal to three tim*es its distance from H

;

it is therefote G, the centre of mass of the pyramid.

94. If the above pyramid be divided into an indefi-

nitely large number of indefinitely thin slices, such as

abc, of the same thickness, we may suppose the mass* of

each slice to be collected at its centre of mass h, which
lies in DH: also the mass of any slice abcfis proportional

to its area, since they are of equal thickness, arid there-

fore to the square on Dh. Hence finding the centre of

mass of a triangular pyramid is the same problem as

finding that of an indefinitely large number of masses
arranged at equal but indefinitely small intervals along a

straight line, each mass being proportional to the square

of its distance from one end y the lihe. We^ infer then

that the centre of mass in the latter case is at a distance

from this end equal to three-quarters the length of the

line. For instance, the centre of mass of a thin rod of

uniform thickness, but whose density varies as the square

of the distance from 'one end, is the point whose distance

from this end is three-quarters the length of the rod.
^
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,
95*. To j^id tlie centre of imea of a pyramid having

any given rectilinear plane figurefor its hose.

Let V be the vertex of the pyramid, ABODE the

I)erimeter of its base.

Let ahcde be a section of the pyramid made by

a plane parallel to the base. Let^P^/i be any straight

line in the plane of the base
;
join VP, VQ, VR, cutting

the plane abed in p, q, r respectively
; p, q,r may be said

to be the corresponding points to P, Q, R respectively.

Since pqr, PQR are the sections of parallel planes made
by the plane PVQ, they are parallel

;

Pq\pq^Vq: Vq^^qRiqr,

pq : qr = PQ : QP.

Hence, if Q be the .centre of m.'iss of two given particles

at P and R, q will be that of particles at p and r, provided

the masses of the latter particles have the same ratio to one
anfother as those of the former have. Similarly, if we
have any number of particles at different points of the
base and also another set of particles at the corresponding
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points of the parallel section, the mass of each particle o£

one set bearing a constant ^atio to that of the correspond-

ing particlfe of the other set, we could shew in the same way
as we have done for two, that the centres of mass of the

two sets are corresponding points, i.e. that thdy both lie iti

a straight line passing^ through the vertex. But we may
suppose the two sections ABCD, abed to be made up each
of a number of equal particles, the positions of the particles

forming one set corresponding to the positions of those

formi(^g the other set. Hence, if II be the centre of mass
of the base, the point A, where VII cuts the section abed,

is the centre of mass of the latter. Dividing then the

pyramid up into an infinitely large number of indefinitely

thin slices cut off by planes parallel to the base, we see

that the centre of mass of each slice and therefore that

of the whole pyramid lies in VH, But the pyramid may
be divided into a number of triangular pyramMs VIIAB,
VHBG, &c. and the centre of mass of each of these will lie

in a plane parallel to the base and at a distance from it

one quarter the distance of the vertex from it. The
centre of mass of the pyramid must therefore be at 0,
the point where this plane cuts VH ; i.e. the centre of

mass is found by joining the vertex with the centre of

mass of the base, and taking a point in the joining line

at a distance from the former point three times its distance

from the latter.

Cor. Since a cone or pyramid with a curvilinear base

may be regarded as the limiting case of a pyramid with

a rectilinear base, when the number of sides is indefi-

nitely large, we can find the centre of mass of a cone in

exactly the same way as we find that ^of a pyramid with

a rectilinear base.

96*. The eSntre of mass of ihe surface of a pyramid
with a rectilinear base.

If the pyramid be the one in fig. 69, its surface mhy
be divided into a number of triangles having the common
vertex V: the centre qf mass of each triangle and thete-
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rfore that of the whole surface will lie in a plane parallel

to the base and at a distance, from the vertex two-thirds

that of the base.

Cur. As a cone is the limiting case of a pyramid, when
the number of sides of the base is indefinitely increased,

the centre of mass of the surface of a cone will also 4e in

a plane parallel to the base and at a distance from the

vertex two-thirds that of the base.

97. To find the centre of mass of an arc of a circle.

Let ABC be the arc, subtending an angle 2a at the
centre 0.

Draw OB bisecting the angle AOC: it is clear from
the principle of symmetry of Art. 91 that the centre

of mass is in OBi Construct a regular polygon circum-

scribing the arc; let PQ be one side of it, touching

the circle at R. Draw Aa, Pp, Qq, Go perpendicular to

the tangent aBc at B; RM perpendicular to OB, and Q8
ta Pp.

The right-angled triangles P^Q, OPifare similar, since

QB, PQ are respectively, perpendicular to OM, OR.
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. . PQ.QS^OR: O^M
;

'

PQ . 0M =9R . QS=OJS

.•.2(PQ. OM)=^l{OB.pq)^OB.%{pqy,

/. OG .
perimeter of polygon = 0J5 . ac= OB . chord AO

, • (Art. 85);

where G is the centre of mass of the polygon.

Also, when the sides of the polygon are taken in-

definitely small, the limit of the perimeter of the polygon
is that of the arc, and their centres of mass are also

coincident. Hence the distance of the centre of mass of

the arc ABC from 0 is

radius CB . chord -4(7 _ r sin a

arc ABC ~ a

The* centre of mass of a uniform circular arc may also be found as

follows

;

Let AC be any arc (2a), 0 the centre. Draw OP ^Tiding the arc AC
into any two unequal parts AP (2d) and PC (2^).
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Draw 05, 0I>, OE bisecting the arcs AC, AP, PC respectively.

Zi)05=z AO5~zAOD=a~^=0.
Similarly lEOB—d,

G, the c.M. of the arc AC, is (Art. 91) in 05, 0^ that of AP in O/J, and

Ga that of PC cn OE.

Draw Gjil/j, GnMn perpendicular to 05.

Then GG^ . arc PA=^GG^. arc P6\

0 . GjMj= 0 . Ga^/a,
*

OGj sin DO5= 0. OGa sin p;05,

OGj . d OG^ • 0
sin ^ sin tf>

’

i.e. - is independent of 6, and is therefore equal to its value when 0

vanishes. But when 0 vanishes ^/sin ^ = 1, and OG^ is clearly r.

„ rsind , rsina
Hence OGj-- -— and 0G= --

0 a

98*. To find the centre of mass of the sector of a
circle.

Let ABC be the sector: from 0, the centre of the

A

circle, draw OB bi3ecting the angle AOC: Then (Art. 91)
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the centre of mass of the sector is clearly in OB, In

,

the arc ABC inscribe a regular polygon; let PQ be one
of its sides*, R the middle point of PQ : join OiJ, and
take r in OR such that Or is equal to |OiJ. Then
the centre of mass of the triangle OPQ iar r, and the
centres of mass of all such triangles are arranged at equal

angular intervals along *the arc of a circle of radius Or, and
Ayhose angle is AOG. But when the number of the sides

of the polygon is increased indefinitely, Or becomes equal

to ^OB ultimately, the sum of the triangles of which
OPQ is a type becomes the sector AOC, nnd the centre of

mass of the latter is that of an infinite number of equal
masses arranged at equal angular intervals along an arc

of a circle of radius ^^OB, and whoso angle is equal to

A OC, But the centra, of mass of the masses arranged along
this arc is that of the arc itself. Therefore the distance

of the; centre of mass of the sector from 0

_ 2 OB X chord AC
• * • “3* “

arc ^6'
'

'

Cor, As the segment of a circle is the difference be-

tween a sector and a triangle, its centre of mass can be
found by the method of Art. 8^

The centre of mass of the portion of a circle cut off

by two parallel lines can also be obtained, since the figure

consists of the difference of two segments.

99*. To find the centre of mass of the belt of a sphere

cut off by two parallel planes.

Let AB be the arc of a circle, which*by revolving about

OE generates the belt ABCP of a sphere in question.

Then (Art. 91) the centre of m'.^s of the belt lies in OE,

Let PQ be *the side of a regular polygon, circum-

scribing the arc AB\ let R be the middle point of PQ,
where it touches the circle. Produce PQ to meet OE hi

T, and draw PM, RK, QN perpendicular to OE, and QL
perpendicular to PM.
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,
The area of the frustum of the cone, generated by the

revolution of PQ about OE
^PT.irPM^QT.i^QN
= Tfr(Pi2 + iJ2^Pl/-7r(i?r~iiQ). QN
^ttRT.PL^^ttPR.RK
= 27rPQ . RK, by similar triangles PQLy RRT
= 27rOP .MN by similar- triangles PQP, ORK
= the area of the belt cut off by the planes Pif,

QN from the cylinder circumscribing the sphere and
having its axis along OE.

A

Hence the sum of the areas of any number of frusta

of cones, of which the one considered is a t}^e, is pqual to

the Slim of the areas of the corresponding belts of the

circumscribing cylinder. But ultimately, when the number
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of the sides of the circumscribing polygon is taken in-

definitely large, the sum of the areas of the frusta of*

the cones becomes the arda of the belt of the sphere.

Hence the area of the belt of a sphere, cut off by parallel

planes, is equal to that ofthe coaxial circumscribing cylinder

cut off by the same planea

iet G be the centre of mass of the belt of ABCD
of the sphere, G’ of the corresponding belt of the cylinder.

Then

0(7. area of ABCD — moment of ABGD about the plane

through 0 perpend, lar to OE
= S (27r 0^ . ilfiV. OK) (Art. 85)

= moment about the same plane of the belt cor-

responding to ABCD of the cylinder

= 00'
. area ot the belt of the cylinder*

00 = 00'. .

Therefore* 0, 0' are coincident, i.e. 0 is in OEy half-

way between the planes which cut off the belt. (Art. 90.)

100*. The centre * f viass of the volume of a sector of
a sphere,

•

Let OAG be the spherical sector generated by the

revolution of the circulai sector A OB abput OB. The
centre of mass is in OB, (Art. 91.)

Imagine the sector lo be divided into an infinite

number of indefinitely small pyramids having the common
vertex 0. The centre of mas.’ of each of these pyramids
will lie on a spherical cap abc, ^ ^lorated^by the revolution

of ab, the arc of a circle, of radius three-quarters that of

ABC, and the safce vertical angle AOB. Supposing the

mass of each pyramid to be collected at its centre of mass,

the centre of mass of the sector AOG is clearly the same as

that of the spherical cap ahe : its distance from 0 there-

fore is equal to J(0m + 06) or f(0if+ OB).
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If the sector be a hemisphere, OM vanishes, and the
'’distance from the centre of the centre of mass of the

volume of the hemisphere is | bf the radius.

Cor. As a spherical segment, the solid figure cut ofi* a

sphere by ‘a plane, is the difference between a spherical

sector and a right cirevdar cone, its centre of mass can be

found by the method of Art. 88.

Tlie centre of mass of the solid cut off a sphere by
two parallel planes can also be obtained, since the figure

is the diff'eieiu-e of two spherical segments.

Ex. 1. With the same assumption as in Ex. 11, p. 1.S3, find where

the resultant pressure acts on a triangle whose \ertex is in the surface of

a liquid and whose base is parallel to the surface, but below it.

Anb. At a point whose depth below the surface i*? three-quarters that

of the base.

Ex. 2. Find the cenhiie of mass of a segment of a circle.

Ans. It is in the (jiameter bisecting the segment, at a distance from

the centre sin^a / (2a - sin 2a), where r is the radius, and 2a the

angle the segment subtends at the centre.

Ex. 3. If a figure consist of a cone and a hemisphere on the same

bafse, find the height of the cone in order that the centre of mass of the

whole may be the centre of the hemisphere.

Ah8. ^ times the radius of the hemisphere.
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Ex. 4. Find the position of the centre of mass of a frustum of a

cone, when the radii of the faced are 4 inches and 8 inches respectivelyt

and the distance between them 7 inches.
•

Am. In the line joining the centres of the faces at a distance of

4J inches from that of the smaller face.

Ex. 5. Find also the position of the centre of mass of the surface of

the^bove figure.
*

A ns. At a distance of 3^ inches from the centre of the smaller face.

Ex. 6. From a cube is cut a tetrahedron, three of whose edges are

the edges of the cube which meet in one of the comers. Find the centre

of mass of the remainder.

Ans. In the diagonal of the cube through the corner from which the

tetrahedron is cut ofi, and at a distance from that corner equal to of

the diagonal.

Ex. 7. Find the centre of mass of a segment of a sphere.

Am. In the diameter of the sphere at right angles to flie base of the

segment and at a distance from tiie centre equal to f (r + h)^ / (2r + h),

where r is the |adiuB of the sphere and h the distance of the base from

the centre.

Ex. 8. A semicircular wire of uniform thickness consists of two

parts AP, PB whose densities arc proportional to RN, AN respectively,*

where PN is the perpendicular from P on ABi prove that the centre of

mass of the whole is in the radius through P.
^

*

101 *. The centre of mass of a seqment of a parabola.

Let BAB' be the segment, AC being the diameter conjugate to the

base BB'.

G. 10
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Divide AC into an infinite number n of indefinitely small equal parts

of which MN is a typical one, the rth. Draw PJ/P', QNQ' chords paral-

lei to <

Let 8 be the focus ;
then

P]\P=4AS . AM.

The centre of mass of the strip PP'Q'Q is in MN. (Art. 91.)

The area PB'Q'Q lies between *
^

PF .MNsinBCAy and QQ'.MN^inBCA,
and the distance of its c.m. from A lies between AM and AN ; there-

fore the sum of the moments of all the strips about a line through A
perpendicular io AC lies between

^ (PF . MN . AM sin BCA), and 2, (QQ' . MN . AM sin BCA),

i.e. between 4A8^ sin BGA . 25 . MN)t

and iAsi sin BCA . 2 (AN^ . MK).

But AM^-AC, AN=—^AC, and MN= — i therefore the
# n n n

moment of the mass of the p/arabola lies between

4A&^ . sin BCA . 11+ 2^^ (izl)!*

,3

. and 4dSi . A C? sin BCA ,
11+

2* +

iAS^ . AC^ sin BCA ...=—
1

. (Appendix.)

Similarly it can be shewn that the area of the segment

_44»si . AO^ sin BCA
I

•

• Hence the distance of the c.m. of the parabola from A

8.iAi . AC^ sin BCA 8ASi . AC’ sin JCA , ,

„

=. g, g- - --^AC.

Also the C.M. is in AC. (Art. 91.) ^

102*. r/i#» centre of inms of a rod of uniform thickness, and whose

dejuity varies as the mth power of the distancefrom one end.

Let AB be the rod, such that the density at any point P varies as

(APT.
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Divide the rod into an infinite number n of indefinitely small equal
^

parts, of which PQ is a typical o*ne, the rth.

‘

^ ?

F!g 76

The mass of PQ lies betvipen

• k.PQ . AP^ and k . PQ , AQ^,

where ic is a constant ; therefore the moment of the whole rod about A
lies between

i.e. between

and

X (kPQ . AP^ . AP) and 2 . AQ),

kAB- «

.

ITO+I ^

i.e.
kAB^-^

?/i+ 2

Similarly it can be shewn that the mass of the rod=s

Hbnce the distance from A of the c.m.

kAB”^+^

in+l ’

^ ^ +

1

?/t+ 2 ' ?» 1-1 m + 2'

The centres of mass of a triangle, pyramid and paraboloid of revolu-

tion might have been obtained by methods similar to those'employed in

the last two articles.
•

Ex. 1. Find the c.m. of a tetrahedron ABCD, which is such that the

density at all points an a plane parallel to BCD is the same and propor-

tional to the distance of the plane from A.

Am, If O is the c.m. of BCD, the required point is in AG, at«
distance from A = ^AG.

Ex. 2. Find the o.m. of a triangui* l&mina A^^C, when the density

at any point varies as its distance from J C,

Ana, The middle ^oint of AD, where D bisects BC,

Ex. 8.- Fidd the c.m. of a tetrahedron ABCD, when the density at

any point is proportional to its distance from the face BCD.

Ana, In AG, at a distance from A equal to ^AO, when G is the c.m.

of the face ABC,

10—2
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I Ex. 4. The density of a conical shell standing on a plane horizontal

base varies as the depth below the vertex: find the depth of the centre

of mass. ^ Ana. £ the height of the cone.

103. Prop. When a body or system of bodies is in

equilibrium under the action of gravity, mutual actions,

and the action of one eaternal supporting point, the centre

of mass of the whole system, and.the supporting point lie

in a vertical line.

For considering the equilibrium of the whole system,

the only external forces acting on it are, its weight acting

vertically at its centre of mass and the action of the

supporting point : but these two forces cannot maintain
equilibrium, unless their lines of action are the same,

which will not be the case, unless the centre of mass and
the supporting point are in a vertical line.

104. Prop. If a rigid body be placed in contact with

a smooth hori^fOntal plane, it will be in equilibrium or not,

according as the vertical line drawn through its centre

of mass meets the horizontal plane within the base or not.

By the base is meant the polygon, without re-entering angles, formed

by joining the extreme points of the body in contact with the plane.

Let ABODE be the base, 0 the point where the

vertical through G, the centre of mass, meets the plane.

(i) When 0 lies within the base.

It is obvious that the direction, in which the weight of

.

the body acting along GO tends to turn it about the

side AB of the btse, is such that the points G, D, E, &c.

would move downwards if the plane were not there to

resist such motion. As the plane is thete such motion is

prevented.

The same remark applies to motion about every other

side of the base. Hence the weight will npt produce

any motion : and the resistances of the plane on the base
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are passive forces which can only resist motion and no(^

produce it. The body is therefore in equilibrium.
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^
Now the reaction exerted by the plane on any point

of the body touching it can only be vertically upwards,

and its moment about AB is ttferefore of the same sign as

that of the weight. The algebraical sum of the moments
of all the forces about AB cannot therefore be zero, and
equilibrium is therefore impossible.

If a curvilinear base be regarded as the limit 6f a
polygonal one, with an infinite number of sides, the above
reasoning applies to it.

In a similar way it can be shewn that a body placed

on an inclined plane, sufficiently rough to prevent sliding,

will be in equilibrium, provided the vertical through the

centre of mass passes through the base, and that if it

does not, the body will topple over.

It will^ be seen hereafter that these propositions are

merely particular cases of more general propositions.

(Art. 123.)
If

Ex. 1. A right-angled triangle ABC, whose sides AB, BG are respect-

ively 5 and 6 feet long, is hung from the point A, Find the inclination

of BC to the horizon, B being the right angle. Ans, tan~^ (J).

Ex. 2. A^ plane triangle is hung with its plane horizontal by three

vertical chains from the middle points of its edges. How heavy must it

be that a 12-stone man may walk anywhere over it without tilting it ?

Am, 36 St.

Ex. 3. A circular table of weight 20 lbs. rests on three legs, which

are on the circumference, and at the corners of an equilateral triangle.

Find the greatest weight that can be placed on any part of the table

without upsetting it. Am, 20 lbs.

Ex. 4. A metal lamina, composed of a semicircle and an isosceles

triangle (vertical angle 2a) on the same base, is vplaced in a vertical

plane with its curved rim resting on a horizontal plane; prove that the

leamna will rest in any position provided tan
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ILLUSTBATIVE EXAMPLES.
•

Ex. 1. It the three diagonals of an octahedron intersect in a point 0,

the centre of inertia of the octahedron coincides with that of seven

particles, one at 0 and one at each of the angular points : the mass of

the particle at O being unity, and of that at each angular point the ratio

of i4s distance from 0 to the diagonal through the point.

Let ABCD be the plane containing two diagonals AOC, BOD: let EOF
be the other diagonal. Let us find the distance of the centre of inertia of

the octahedron from the plane ABCD, Let be the .height of the

pyramid, having base ABCD and vertex F, and let ^2 ^he height of

the pyramid having the same base and vertex E, •

.-.the volume of first pyramid : volume of second= ^, : h^=iOF : OE,

The distance of thp c.i. of the octahedron from tlip plane,ADOD'

^1 +^ •

(Here, distances from the plane ABCD have been estimated positive

when towards F, and negative when iix opposTie direction.)

The distance fropi ABCD of the c.i. of the seven particles

- OF . OE
,

/ OF+OE OA + OC OB + 0D\
EF’’^\EF ' E’F ^ AC BD )
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^
Hence the distances of the centres of inertia of both octahedron and

the seven particles from the plane ABCD are the same: and it could

be shewn in a similar manner that their distances fronj the planes

BKDFf ECFA are also the same. The two points are tWefore coin-

cident.

Ex. 2. Find thp centre of mass of a S6g|meut cut off an ellipse by a

straight line. •

Let BPFj be the segment cutting the ellipse, whose semiaxes are CA^

CB* Let hjiA be the auxiliary circle. Draw the ordinates I)D\ EE\ and

let them be produced to meet the circle in d, respectively. Join de^

^d produce it to meet •IJE in T, T is in CA produced. Draw two

ordinates .PP', QQ' of the ellipse indefinitely near to one another, and
let them meet DE in 3/, N respectively. Produce them to meet de in

m, n, and the circle in p, q respectively.

PP'
;
pP'^CB : CA^MF : mF ;

•.*. MP : mp=CB : CA;

the ajea PQNM : are&pqnin=CB : CA.

Both elliptic and circular segments may be divided up into the same

infinite number of strips, of which PQNM, pqnm he types. Let 0 be

the c. M. of DPE, and g that of dpe,

• The distance of G from CB

_ moment of DPE about CB
”*

mass of DPE
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cs
2 (PQN3r .CP’) CA^

.
= ElPQNM,

=

_ S (pqnm , CP*) _ moment of dpe about CB
^ {pqnm) mass of dpe

= distance G from CB, •

The distance of G from CA
*

X. /n^XTEr PP' + MP'\ GB^ pP^ +mF\i —_—j
. 2 r--

j

2 (pgNJi)
—

CB
=^ X distance of g from

C.4

C/i

CA' : ipqnm)

But the position of g is known (Art. 08), and therefore its distances

from CA and CB

:

hence tho position of G is determined.

Ex. O’. A bowl of uniform thin material in the form of^a segment of

a sphere is closed by a circular lid of the same material' and thickness

which is hinged across a diameter. If it be placed on a smooth horizontal

plane with one flalf of the lid turned back over the other half, shew that

the plane of the lid will make with tho horizontal plane an angle

tan~i tan ; a being the angle any radius of the lid subtends at

the centre of the sphere of which the bowl is part.

Let EOC be the diameter about which the lid turns : BO the radiu^

at right angles to it. Let O' be the centre of the sphere, and let O'O

meet the surface of the bowl in II, The centre of mass of the bowl
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is at Q* in OH, such that 00^=0*11
; that of the doubled lid is at O in

• WB
OBj such that 00= - — . Draw O'A vertically downwards, let 0 be the

oir
j

angle HO'At which is the inclination of the lid to the horizontal. A is

the point where tho bowl touches the horizontal plane. Let r= the radius

of the bowl. The centre of mass of the whole body must be vertically

above A, (Art. 103.) «

The distance of G' from O'

A

= O’G' sin $= (O'H - G'H) sin 6

= [r- J (r-rcosa)} sin d= Jr (1+cos a) sind.

The distance of G from O'A — - 00' sin d+ 00 cos 0

. ^ 4r sin a= - r cos a Bin dH ^ cos
OTT

d.

2irr’ (1 - cos o) . - (1 + cos a) sin d

= ir7*-sin®a^-
. ^ 4r sin a A

-rcosa smd-{— — cos d
dir j

, •
. ^ 4 sin a

sind= ~cosa8md+ - -- cosd;
6t

,

^ ^4 sin a 4 . a
tan d = — . -5 =

;7- tan -

.

dir 1 + cos a dr 2

Ex. 4. A right circular cone rests with its elliptic base on a smooth

horizontal tivble. A string fastened to the vertex and the other extremity of

the longest generator passes round a smooth pulley above the cone, so

that all parts of the string except those in contact with the pulley are

vertical. If the string become gradually contracted by dampness and tend

to lift the cone, shew that the end of the shortest generator will remain

on the table provided the diameter of the pulley be less than three times

the semi-axis major of the elliptic base.

Let AOB he the major axis of the base, 0 the centre: lit VA be the

longest generator, VB\he shortest. Join FO, and take VG=jV0, G is

the o.M. of the cone.* Let O be the middle point Draw CKt

ONt VM perpendicular to the plane. The forces acting on the cone are

its weight W vertically downwards at G, the tensions T, T of the string

vertically upwards at V and A, and the reaction of the plane on the base.
,

We may replace the tensions by 2T upwards at Q,

Now the motion is produced by 2r and W, the resistance of the plane
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being a poBsive force only resists motion. It is obvious then that the^

T

cone will tend to turn about A ot Jl according as C is right or left of Gf,

i.e. according as AK is > or AN,

i.c. „ lAM i3 > or - AO fjav, •

i.e. „ lAM is ot < AO {AM- AO),

i.e. „ AM is > or f^AO,

EXAMPT^S.
^

1. ABC is a triangle, D, E, F are the middle points of its sides,

shew that the centre of gravity of the perimeter of ABC coincides with

the centze of the circle inscribed in DBF.
•

2. ABCD is any plane quadrilateral figure, and a, b, c, d are respect-

ively the centres of gravity of the triangles BCD, CDA, DAB, ABC\

shew that the quadrilateral abed is similar to ABCD,
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Prove that the centre of gravity of a wedge, bounded by two simi-

' lar, equal, and parallel triangular faces and three rectangular faces, coin-

cides with that of six equal particles pl:iced at its angular points.

4. A’thin uniform wire is bent into the form of a triangle ABCt and

heavy particles of weight P, Q,R are placed at the angular points
:
prove

that if the centre of mass of the particles coincides with that of the wire

P : Q : R=b-\-c : c+a : a+h, «

6.

The perpendiculars fibom the angles B, C meet the sides of a

triangle in P, Q, R: prove that the centre of gravity of six particles pro-

portional respectively to sin^A, sin^P, sin*C, cos*^, cos^P, cos^C, placed

at A, B, C, P, 0, P, coincides with that of the triangle PQR,

6. A plane quadrilateral ABCD is bisected by the diagonal AC, and

the other diagonal divides AC into two parts in the ratio p : q; shew

that the centre of gravity of the quadrilateral lies in AC and divides it

into two parts in the ratio 2p+ q : p+2q,

7. A heavy elliptical ring, whose eccentricity is is ‘suspended with

its plane horizontal by three vertical strings, one of which is attached to

the end of the minor axis, one to the end of the major, axis, and one to

the end of a latus rectum. Prove that the tensions respectively are i,

and of the weight of the ring.

8. A triangular table is supported by three legs at the middle points

of its sides. A given weight is placed upon it in any position. If weights

P, Q, R placed in succession at its angular points will just upset it, prove

. that P+Q + RiB constant.

9. A uniform wire is bent into the form of a circular arc and its

two bounding radii, the arc being greater than a semicircle. Shew that

if the acute angle between these bounding radii be tan~i 4
^
the centre of

gravity of the whole wire is at the centre.

10. A triangular lamina is supported at its three angular points and

a weight equal to thatS)f the triangle is placed upon it ; find the position

of the weight if the pressures on the points of support are proportional

to 4a + h+ c, a+ 46+ c, a + b + 4c, where a, b, c are the lengths of the sides

of the triangle.

11. Particles are placed at the comers of a tetrahedron respiptively

proportional to the opposite faces: prove that their centre of gravity

is at the centre of the sphere inscribed in the tetrahedron.
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12. ABCD is a quadrilater^ whose diagonals intersect in 0. Parallel

forces act at the middle points of JB, BOt CD, DA respectively proper
-

'

tional to the yireas AOB, BOC, <SOD, DOA. Prove that the centre of

parallel forces is at the fourth angular point of the parallelogram de-

scribed on OK, OF as adjacent sides, where E, F are the middle points

of the diagonals of the quadrilateral.

13. A solid, consisting o? a hemisphere and a right circular cone on

opposite sides of the same circuUr base, is in equilibrium, when placed

with any point of the hemisphere on a horizontal plane. If the whole

solid can just be included in the sphere of which the hemisphere in

question is half, prove that the density of the* cone is three times that

of the hemisphere.

14. If three uniform rods of the same material but of different thick-

nesses be formed into a triangle ABC, and if their centre of gravity be

at the orthocentre of this triangle, prove tliat their thicknesses must be

proportional to *

oos(R- C) -3cos cos(C-iI)-3co8B, cos (d - R) - 3 cos C.

15. The comers of a pyramid are cut off by planes parallel to the

opposite sides: if the pieces cut off be of equal weight, prove that the

centre of gravity of the remainder will coincide with that of the pyramid.

16. Two uniform heavy rods, AB, BC, rigidly united at B, are hung

up by the end A

;

shew that BO will be horizontal if

sin 0= a/2 . sin ^B,

17. A uniform triangular lamina of weight W is suspended from a

fixed point by means of stringa attached to its angular points: shew

that, unless its plane be vertical, the tensions of the strings are

W.li

V{3(V+ V+f8®)-a2-62-d}’

and similar expressions ; li, f,, beirf' ^be lengths of the strings, and

a, b, c the sides of the triangle.
’

18. Find the cenire of gravity of a solid sector of a sphere, in which

the density at any point varies as the cube of its distance from the centre.

A heavy body with a cavity kk which lies a small loose heaV
sphere^ is -suspended from affixed pdint: shew that, if it hang in-

differently in all positions, the form of the cavity most be spherical.
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20. Find the centre of mass of the segment of a spheroid out otf by

a plane perpendicular to the' axis.

€»
^

21. Shew how fo determine the position of the centre of gravity of

the area contained between two concentric, similar, and similarly situated

ellipses and two straight lines drawn from the common centre. .

. 22. If from a triangle three equ&l triangles -dBQ, BPR,pQP
be cut off, the centres of inertia of the triangles ABC, PQR will be

coincident.

23. Out of a uniform* circular disc, radius a, are cut two circular

holes, radii b and c, and centres at distances j9, y from that of the disc,

and distance d from one another. • Find where to cut the hole of radius

^bc, so that the centre of mass of the remainder may be the centre of

the disc : if the distance of the centre of this hole from that of the disc

be r, shew that

. + + (^/c2+y/b®).
t

24. A rectangular sheet^of stiil paper, whose length 's to its breadth

as J2 is to 1, lies on a horizontal table with its longer sides perpendicular

to the edge and projecting over it. The comers on the table are then

doubled over symmetrically so that tho creases pass through the middle

point of tho side joining the comers and make angles of 45® with it.

The paper is then on the point of falling over; shew tliat it had originally

li of its length on the table.

26. ABC is a triangle
; APD, BPE, CPF tho perpendiculars from it

on opposite sides. Prove that the resultant of six equal parallel forces,

acting at the middle points of the sides of tho triangle and of lines PA ,

P£, PC, passes through the centre of the circle which goes through all

of these middle points.

I
*

26. The inscribed circle of a triangle ABC touches the sides in 2), E,

F, Prove that the centre of gravity of weights proportional to BC, CA,

AB, placed at A, B, C respectively, coincides with the centre of gravity

of the same weights placed at B, E, F respectively.

27. Find the centre of gravity of that part of the circumscribing circle

of* a triangle which lies outside the nine-points circle ; and shew that its

distance from the centre of the Icircumsoribing circle is half that of the

centre of gravity of the triangle.



CENTRiS OP MASS. 159
*

26. A, B, Cf D, E, F are six equal particles at the angles of any

plane hexagon, and a, c, d,e, f SLre the centres of gravity respectively
*

of ABCt BCDt CDEf DEF, EFJ^ and FAB. Shew that the opposite

sides and angles of the hexagon ahcdef are equal, and that the lines

joining opposite angles pass tlirough one point which is the centre of

gravity of the particles A^ B, O', D, E^ F,

20. Find the centre of ppiass of a solid hemisphere whose density

varie? inversely as the distance from the centre.

30. A circle whose diameter is equal to the latus rectum of a parabola

has double contact with it. Find the position of the centre of mass of

the area bounded by the two cuives.

81. A triangular lamina ABC hangs at rest from the point A: if

AB=Ct AC=bj and S represent the area of the lamina, pro\e that the

tangent of the inclination of JiC to the vertical is equal to 4/S/(2>^ c^),

32. A smooth solid hemisphere rests with its flat base against a
vertical wall and is supports ii by a string, one end of which is fastened

to the vertex of the l.emi'.])herc and the other to a point *in the wall.

Prove that the inclination of the string to the«vertioal exceeds

,
tan '(ti).

33. Find the centre of gravity of the surface of the octant of a

sphcio. *

34. In the side BC of a triangle ABC a point E is taken such that

CE—^CB sin* IS*’; AE is produced to h so that ED^^^AK coseo 18®,

and DC is joined. Prove that E is the centre 'of mass of the figure

ABEDCA,

35. If the opposite edges of a tetrahedron are equal, prove that the

centre of gravity of its six edges and the centre of gravity of its four

faces both coincide with tho centre of giavity of its volume.

86. If A, R, (7 he three fixed points, and P any point on a circle

whose centre is 0, shew that i

APa. aPO<7+PP3, + a
. A AOP= constant.

I

37. From an external point an enveloping cone ib drawn to a sphere:

prove that the centre of gravity of a uniform solid bounded by the sphere

and cone is at a distance AN^I^CN from the centre of the sphere, wherb

GA is the radius of the sphere from the centre C drawn towards the

outer point and cutting the plane of contact in N.
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The centre of gravity of a solid hexahedron whose faces are

triangles is the same as that of five equal weights placed at the comers,

and of an equal negative weight plr<ced at the point where the line

forming the two trihedral angles outs the plane of tiie other three

angles.

39. A pack of cards is laid on a table and each projects in direction

of the length of the pack heyond the one be^ow it : if each is on the^oint

of tumbling independently of those below it, prove that the distance

between the extremities of successive cards will form a harmonical pro-

gression.

40. Prove that the sum of the squares of the sides of the triangle,

formed by joining the feet of the perpendiculars let fall from a point

inside a given triangle on the sides, has its least possible value, when

the point is the centre of mass of three particles, at the angles of the

given triangle, whose masses are proportional to the squares of the

opposite sides.
f

41. A uniform circular disc of weight nJV has a heavy particle of

weight IT attached to a point on its rim. If the disc bq suspended from

a point A on its rim, B is the lowest point : and if suspended from B,

A is the lowest point. Shew that the angle subtended by AB at the

centre is 2 sec~^ 2(n + 1).

42. A t^in shell is bounded by two similar' surfaces ; any closed

curve being drawn on the surface, prove that the centre of inertia of the

included portion of the shell, and the centre of inertia of the solid

formed by drawing lines to the boundary from the centre of similitude,

are in a line with the centre of similitude and at distances from it which

are in the ratio 4 : 3.

43. A frustum is cht from a right cone by a plane bisecting the axis

and parallel to the base. Shew that it will rest with its slant side on a

horizontal table if the height of the cone bear to the diameter of the

base a greater ratio than ^7 : ^/l?. <

44. Four weights are placed at four fixed points in space, the sum
Of two of the weights being given and also the sum of the other two

;

prove that their centre of mass lies on a fixed plane, and within a

certain parallelogram in that plane.
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45. A sphere, radius r, rests on three points at equal distances a,

apart on a horizontal plane. If one of these points be depressed so that

the plane containing the three is inclined at an angle $ to the horizon, the

sphere will roll off if B exceed but if the point be raised the

Inhere will roll off if B exceed 8in“*{«//^ (4r2 - a®)}.

46. A hemispherical bojirl of radius r rests on a smooth horizontal

table, and partly inside it rests a rod of length 2Z, of weight equal that

of the bowl. Shew that the position of equilibrium is*given by

I sin{a+ /3)=rsma= - 2r cos (a+ 2j8),

where a is the inclination of the base of the hemisphere to the horizon,

and is the angle subtended at the centre by the part of the rod within
* the bowl.

47. Two equal segmentb are cut from a hollow sphere, and are hung
up from a point by two equal strings attached to their rims, so that

their convexities are outwaids. Prove that, if the lengths of the strings

be equal to the diameter of either rim, they are inclined fo each other

at an angle=2 tan^^ (4 tan ^a), where 2a is the angle subtended by either

segment at the ^ntre of the sphere.

48. A cone of vertical angle 2a is supported by a string passing over

two smooth pullies in the same horizontal line, the string being attached

to the vertex and to a point in the circumference of the base. Prove

that in the position of equilibrium sin (a + 9 + 0)= | cos a sin d cos 0,

where B is the inclination of either portion of the string to the horizon,

and 0 is the angle the base of the cone makes with the vertical.

,

49. The top of a right cone, semi-vertical angle a, cut off by a plane

making an angle /3 with the axis, is placed on a perfectly rough inclined

plane 4rith the major axis of the base along a line of greatest slope of

the plane ; in this position the cone is on the point of toppling over:

prove that the tangent of the inclination of the plane to the horizon

has one of the values *

4 sin 2a sill 2/3

• cos 2a -cos 2/3
’

50. A ring is made up of three arcs, BC, CM, AB, of uniform sectioz^

but of different metals: uniform rods OA, OB, OC, made of the same

metals as BO, CA, AB respectively, but with sectional area double that of

the arcs, connect the points A, B, G with the centre 0. Find the angles

G. • 11
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^
a, jS, 7 which BC^ CA, AB subtend at 0, in older that the centre of

gravify of the whole may be at 0, and shew that, if Wj, Ug be the

weights per unit length of BC, CA, an^ AJ9 respectively,

W2)taniatanjlj8+(w2 - wj)tan JjStan i7 +(b;j- Wj) tan J 7 tan j^a=: 0.

51. Find the centre of xn{iss of a spherical surface, over which the

density at any point varies as the nth power of the distance from a fixed

point on the surface.
^

52. A solid of uniform density formed by the revolution of a quadrant

of a circle about a tangent at one extremity is placed with its vertex and

one point in the rim of the base resting on a horizontal plane. Prove that

the pressure on the table at the last of these two points is one-eighth of •

the weight of the right circular cone of the same height, base and density.



CHAPTER V.

Friction.

105. We have hitherto supposed, that the action

exerted by one surface in contact with anot|^er is neces-

Tsarily along the common normal at the point of contact, in

other words that the surfaces are perfectly smooth We
have however no experience of bodies except such as do,

in certain cases, exert on other bodies forces inclined to
the common normal at the point of contact, in otJier words
all bodies we are acquainted with are more ob less rough.

Suppose the following experiment to be made. Take a
mass of some•material having a plane surface, and fix it so
that this surface is horizontal : on it place a portion of
some solid material. Now it will be found that, whatever
be the materials used, and how^ever highly their surfaces

m contact may be polished and lubricated, it is always
possible to turn the horizontal surface through a finite

angle without the upper body slipping, though it may
topple ovei\

Let W be the weight of the upper body, a the inclina-

tion to the horizon of the plane on which.it rests: then

Fig. 8d

11—2
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^ resolving W into W cos a perpendicular to the plane and
W sin a along the plane, we infer that as W is counteracted

by the action of the plane on the. body, this action must
consist of two components i2 ( cosa) along the common
normal, and F sin a) along the plane. The latter

force is called the friction. We see also that FjR = tan a.

When the body is just about to slide the friction exerted

is said to be the limiting friction.

106. The laws relating to statical friction are :

(i) Friction always acts in the direction opposite to that,

in which the point of the surface acted upon, would move,

relatively to the other surface, if there xvere.no fiction.

(ii) The magnitude is always the least possible required

for preserving equilibrium, provided this amount does not

ecL'ceed the limiting friction.

These laws are axiomatic and are particular cases of

the general axiom that ^Passive fcyrce, being entirely

due to the tendency to motion caused by Active forces, only

resists such tendency : its direction therefore is always
directly opposite to the motion resisted and its magnitude
nevet' exceeds the minimum required for preserving equi-

librium, and is ifpossible equal to this minimum.

107. Let us now make another experiment. As before

take a plane surface of some material or other, and on it

place blocks of different weights, shapes and sizes, but all

made of the same material. If now the plane be gradually

inclined in any direction more and more to the horizon,, it

will be found ths^t es^ch and every block, no matter what
face it has in contact with the plane, begins to slide as

soon as a certain inclination of the plane to the horizon is

exceeded, but not before
;
also, that when it. does slide, the

\ncreaBe per second in its velocity is constant. This angle

though constant for the same pair of materials varies con-

siderably for diflferent pairs. Any block may topple over

before the othdrs slide.
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Let us see what inferences can be drawn from this*

experiment.
^

Let a bfe the inclination of the plane to the horizon,

vhen all the blocks are just about to slide : the friction

exerted is in each case limiting, and since i^//J=stana,

(Art 105), the ratio of ,the limiting friction to the normal
pressure is the same for all the blocks. Also since the

weights and therefore the normal pressures differ, this

ratio is independent of the normal pressure. Since a is

the same whatever face of a block rests on the plane, the

ratio F:R independent of the area of the surfaces in

contact. Since the increase per second in the velocity of

a block is constant, the force on it is constant, i. e. the

friction is independoiit of the velocity.

The above experiment confirms the so-called Laws of

limiting and dynamical friction. ,

These laws arc .

(i) So lQ\g as the substances in contact are imalte^^ed,

the ratio of the limiting or dynamical friction to the normal
pressure is independent of the magnitude of the latte7\

(ii) So long as the substances in contact are unaltered^

the friction is independent of the area of the sy^rfaces in

contact

(iii) When motion takes place, the dy^mmical finction

is independent of the relative velocity of the points in contact

108. These laws must not be regarded as rigorously true in all cir>

cumstances, but only as n^ore or less approximg,te expressions of the

results obtained from the experiments of Coulomb and Morin, who enun-

ciated them. More recent investigatl'MU^would fi^em to shew, that in

certain circumstances they are veiy lar indeed from expressing the

amount of friction exei*ted.

According to a report, read before the Institution of Mechanical En-

gineers by Captain Douglas Galton, on experiments made by him on the

application of brakes to locomotive-wheels, the friction diminishes as the

velocity increases beyond a certain limit, and is also less after it has been

exerted for some time than when first applied. In the experiments of



166 STATICS.

Morin and Galton the surfaces in contact were not lubricated in an/

way. Before the same Institution in 1883, Mr Beauchamp Tower read a

report on some experiments made by himself on a thoroughly lubricated

journal revolving in bearings. These experiments shewed that in certain

circumstances the friction per square inch was nearly independent of tUc

normal pressure and tliat it increased with the velocity of revolution.

. A rise in temperature was accompanied b5 a reduction in the friction,

though this might be caused by the lubricant becoming more efficient.

Professor Thurston states that from his own experiments, he inferred

that the friction at first diminished as the velocity increased and then

increased again.

As however we are only concerned with statical friction we may take

laws (i) and (ii) as giving fairly accurately the friction in the cases which

we shall have to consider.

109. Def. The ratio of the limiting friction to the

normal pressure, which ratio we see by laws (i) and (ii) is

constant, is called the coefficient of friction for the pair of

materials in contact.^,* The angle the total action makes
with the common normal at the point of contact is termed
the angle of friction^ provided the limiting friction is

exerted.

Hence (Art. 105) the coefficient gf friction is equal to

the tangent of the angle of friction.

The coefficient of dynamical fHction is the ratio of the
friction to the normal pressure wheik motion is actuallj

taking place. It is found by experiment to be less than
the corresponding coefficient of statical friction, in other

words, there is more resistance when motion is just about
to take place than* when it is actually taking place.

Ex. 1. If the smallest force which will move a given block weiring
8 lbs. along a given horizontal plane be ^'6 lbs. ; find the greatest angle

at which the plane may be inclined to the horizon without the block

sliding. 'An$, 80^.
•

Ex. 2. If a weight of 14 lbs., when placed on a rough plane inclined

8t an angle of 60^ to the horizon, slides down, unless a force of at least

Tibs, acts on it up the plane, what is the coefficient of friction f
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Ex. d« If a weight of 4 lbs. is just *on the point of slipping down a i

roogh plane, inclined at an angle of 45^ to the horizon, when a force of

2 lbs. acts up^he planei find the feast force which will move 'the weight

up the plane, when the inclination is to the horizon. Am. 3*01 lbs.

•

Ex. 4. Weights of 4 and 5 lbs. respectively, connected by a light rigid

rod, are placed on a rough inclined plane, with the rod parallel to a line

of greatest slope. If the coefficient of friction between the 4 lb. weight

'

and the plane be *6 and that between the other weight and the plane *42,

find the greatest inclination of the plane to the horizon, consistent*with

equilibrium.- if as. taci~^ *5.

Ex. 5. Find the greatest angle at which a plane may be inclined to

the horizon so that three equal weights whose coefficients of friction are

•5, *6, *7, respectively, may when connected by strings rest on it without

sliding. The weights are supposed placed along a line of greatest slope

so that each is rougher than the one next below it. Am. tan“i *6.

Ex. 6. A uniform ladder rests in limiting equilibrium, «dth its lower

end in*contact with a rough horizontal plane and its upper end with a

smooth vertical wall. If X be the angle of friction and a the angle the

ladder makes wfth the vertical,' prove that tan a= 2 tan X.

Ex. 7. If everything is as in Ex. C, except that the wall is as rough

as the ground, prove that a=2X.

Ex. 8. Two equal heavy lings, P and Q, slide on twp rough rods

inclined at the same angle a to the hoiiron: a stiing connecting P and Q
passes through an equal ring. Shew that if P and Q are each on the

point of slipping down, the inclination (fi) of either part of the string to

the vertical is given by the equation * •

tand = 3tan (a-X),

where X is the angle of friction.

Ex. 9. A body is resting on a rough inclined plane of inclination a,

the angle of friction being 0 whioh ib gireater tlfkn a. Shew that the

ratio of the least force which will drag the body up the plane to the least

force which will drag It down is sin (0+ a) : sin (0 - a).

Ex. 10. One end of a uniform rod is on a rough inclined plane {o

which the rod is perpendicular : at the other end is applied a force parallel

to the plane : if the rod be in equilibrium, prove that the coefficient of
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t Ex. 11. Two equal rough balls lie in contact on a rough horizontal

table : another equal ball is placed on them so that the centres are in a

vertical plane: find the least angle of friction (l)*between the upper and
lower balls and (2) between the lower balls and the table, in order that

. tbqr may be in equiUbrium.
(1) 150^ (2) tan-i i(2 -

Ex. 12. A rectangular block of cast iroi^ whose base is 2 feet square

and weight 10 tons, rests on a fioor of cast iron (coefficient of friction ^16).

A rope is attached to it at such*a height above the fioor, and pulled with

such a force in a direction making an angle measured upwards of 80^

with the fioor, that the block is on the point of sliding and tumbling

:

find (1) the height of the point to which the rope is attached and (2) the

tension of the rope.

Ans, (1) G-83 ft., (2) 1*68 tons.

Ex. 13. Two weights resting on a rough inclined plane, whose

inclination a is greater than the angle of friction X, are connected by

a string which passes over a smooth peg on the plane : shew that the

least possible ratip of the less to the greater is sin (a - X)/Bin (a + X).

Ex. 14. Two equal heavy rings hang^ on a rough horizontal rod,

and are connected by a string of length e which supportifan equal ring

:

find the greatest possible distance between the first two rings.

.4/w. 3MC/(1+V)*i.

110. Def, Let a cone be described, having its ver-

tex at the point oC contact of two surfaces, the common
normal for axis, and the angle of friction as semi-vertical

angle. This cone is called the Coiie of Friction,

The Laws of statical friction, given in Arts. 106, 107,

are all included in the following statement. If all the

other forces^ extemcil and internal^ acting on the point of
cmtact he compounded into a single resultant JB, the action

of the surfojce in Contact will be equal and opposite to R,
whatever he the latter's magnitude or direction, prodded
its lim of action does not lie without the cone offriction.

Hence a body in contact with rough surfaces will be
in equilibrium, provided that to ensure its being so, it is

not necessary to assume that the total action at any point

of contact lie.s outside the corresponding cone of friction.
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It should be noticed that the cone of friction is always •

drawn so that its concavity is towards the body, the action

on which wte are consideriifg.

111.* To find the relation beUoeen the tensions at the

ends of a light string stretched over a rough surface^ and
on Ijie point of slipping?

Let APQRZhe the string, which is on the point of
slipping from Z to A. Let the points A, Q,

Z be taken so that the ultimately indefinitely

small angles between the tangents at consecutive points

sgre each equal to 6, Let \ be the angle of friction, /a tb©
coefficient of friction.

Let us consider a small portion, JPQ, of the string.

It is kept in equilibrium by the tensions at P and Q
and the resultant action of th© urface. •

As in Art. 81, construct a force-diagram Oab...pqr..,yz,

such that Oa, Ob, ...Op, Oq, Or,,,.Oy, Oz represent the

tensions at A, B,..,P, Q, R,.,.Y, Z respectively. Join

ah, bo,.».pq, qr,,..yz. These last will represent the fe-

sultant actions of the surface on AB, BC,...PQ, QR,,..ZY
respectively.’
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As the portion PQ is on the point of slipping from

Q to P, the resultant action on it makes with the normal

at either P or Q an angle differing from \ by an in-

definitely small quantity, and on that side of the normal
by which it will most assist the tension at Q. Hence in

each of the triangles Oah, Opq^ &c. the angles at 0 are

equal, and* the angles Oah, Opy, &c. are each equal to

— X ultimately
;
the triangles therefore are all similar

to one another. .

•

Let n be the infinitely large number of portions ABy
BC, &c. of the string : then n0 = a finite angle, a say.

Th«. .

cos\

Op = 0(7
cos (X — 0)

cos X

COS X ‘

Oa = Oz ~) ~ ^ ^ ^)*

»

log Oa = log 0«+

3

log (1 — sin*d)H-«log(l +/*tan^)
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But

= l^g Os — ^ sin’ ^ ^
^

s
•

?i sill* 0 ^ ultimately,

. 4 ^ .
nsin*a==ci —

.
=0

0

4. n tan 0
n tan ^ = a .

— = a

n tan* 0 = a tan ^ = 0

and each series is convergent,

log Oa = log + /Aa ultimately;

Oa^Oz
\

V. tension at -4 = . tension at Z,

If the string be in one plane, the curve abcd..»z will

be a plane one, and as the tangent at every point makes
a constant angle with the line joining the point with 0,
the curve is an equiangular spiral, /fhe ratib of Oa to

Oz might therefore be obtained from the known properties

of that curve.

If thet string be not in one plane, the curve abc...

will not be a plane one; it can however be made so

without altering the distance of any point from 0, by
turning each of the triangles Gab, Obc, &c. about a
side terminating in 0, until *key aro* all in one plane,

when the curve^ becomes an equiangular spiral, and the

ratio of Oa to Oz can be obtained as suggested above.

Ex. A string, attached to a weight of 10 lbs. which rests on a rough

horizontal plane, passes over a rough peg, and just supports a weight of

5 lbs. at the other end : whereas if the string be coiled once round the

peg, a weight of 80 lbs. can be supported by it without the other weight
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^slipping. Find the coefficient of friction of the plane, assaming that the

position of the string between the 10 lb. weight and the peg is hori-

zontal. «
,

Am, *25.

112.* We shall sometimes be required to solve problem^
of the following kind. A system of bodies is in equilibrium

under certain conditions ; a gradual change occurs in ;>ne

or more of these conditions—e.g. the coefficient of friction

at one or more points of contact of the bodies is gradually

diminished, some external force is gradually altered in

magnitude or direction, or the position of one of the bodies

is gradually altered. When this gradual change reaches

a certain stage equilibrium is no longer possible, and it

is required to ascertain the way in which equilibrium is

broken, in other words, the nature of the initial motion of

the different bodies. The actual way in which equilibrium

is broken ,must satisfy the following conditions. The
various forces acting on the different bodies, when ‘such

a motion is about to take place, must be able to adapt
themselves so as to satisfy the necessary conditions of

equilibrium, without in any way violating the laws re-

lating to passive forces: they must also be incapable of

satisfying the necessary conditions of equilibrium, if the

change in the initial conditions increase still further.

We shall generally proceed by considering the different

ways in which it is conceivable equilibrium might be
broken, without violating the geometrical conditions. If

only one of these satisfies the above conditions, it is the
way required; if more than one satisfy it, it is beyond the
limits of this treatise to obtain a solution of the problem.

The following hile will often enable ns to solve such
problems. If it is inconceivable that equilibrium can be

broken, except by one of the bodies either turning about or

sliding past a point of contact with amther body, the

former motion will actually take place, provided it does not

involve the assumption that the total action at the point in

question lies outside the cone offriction.
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This rule is a deduction from the axiomatic law re-,

*lating to passive forces (Art 106). For if we suppose the
body connected with the hther body at the point of con-

tact by a smooth joint, it can only tarn about that point
If now motion be on the point of taking place, the first

body will be about to turn about the joint, which will

exert some action on iU If this action does not necessarily

lie outside the cone of friction, it could be exerted at the

point of contact if no joint existed, i.e. the motion is the

same without the joint as with. On the other hand, if

the action at the joint be outside the cone of friction,

it could not be exerted unless the joint existed, i.e. equili-

brium is about to be broken by the body sliding past the
‘ point of contact in question. When it is necessary to

assume that the action at the joint is exerted along a

generator of the friction-cone, the question cannot be
solved by the above rule, as it shews that slipping is about

to occur at the point at the same instant as*rolling.

Exs. 5, 6, 9, 10 are illustrative of this principle and should bo

studied attentively.

ILLUSTRATIVE EXAMPLES.

Ex. 1. A uniform rod MN rests with its ends in two fixed straight

grooves OA, OR, in the same vertical plane, an^ making angles a, /3 with

the horizon
:
prove that, when the end M is on the point of slipping

doum JO, the tangent of the inolination of 3LV to the horizon is
*

_ sin (a-iS-2g)’

2 sin (jS+ e) sin (tt~ e)

'
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Let & be the inclination of ilLV to the horizon, when M 4s on the

'point of slipping down A O,

Draw Mm, Nn, normals to OA, OB} respectively. Sinq^ the point M
is on the point of moving down AO, the limiting friction is exerted at M
in the direction MA, and the direction of the total action of OA on thd

rod makes the angle e with Mm, on the side towards A

.

Similarly, because N is on the point of slipping OB, the tetal

action of OB on the rod makes the angle e ^vith Nn on the side to-

wards 0.

Let the lines of action of the forces on MN at M and N meet in JET

;

then, (Art. 61), H is vertically above O, th(‘ middle point of the rod^

Join HG.

MG : 011= sin MHG : sin HMG = sin (o - e) : sin
(
Jrr ^ - a + c)

;

also JV’G: Gi/= sin ^//Cr : sin = sin (jS+ e) sin (Jtt - j^ + e);

/. sin (a - e) : cos (a -

1

- d)=sin (/8-f- e) : cos (j8 + c -f d).

sin - j9 - 2e)
Henco we obtain tun 0

2 sin (a - c) sin (fi + e)

Ex. 2. A glass rod is balanced partly in and partly out of a cylindrical

tumbler with the lower end resting against the vertical sid« of the tumbler.
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If a and are the greatest and least angles which the rod can make with

the vertical, prove that the angle of friction, X, is

^ sin^acosa+sm^jScoB/S

* Let JZj be the rod, G its centre of mass. Let C be the point of the

edge of the tumbler on which AB rests. Draw AD normal to the tumbler

at ii.and CE perpendicular to the rod at C,

(i) When AD makes the smallest possible angle with the vertical, and
is therefore on the point of slipping into the tumbler.

Since A is on the point of slipping down, the action there on J/t is

in the direction All^ wnich lakes the angle X with AD on the side

towards C. Similarly, the action at C on the rod is in the direction CiC,

^ which makes the angle X with GE^ on the side away from A,

Let KC and*All meet in //, which must therefore be vertically below O.

Join GJr. Let a bt. the diameter of the tumbler, and let AG=r»

AG : All- sio A/KJ * sin ICfJ/=cos X : sin )8,

and All : AC^ain AOII

:

&in AMO =co'i X : sin (2X+/3)

;

. jIG ; AC^COS^ X : sill fi sin (/3'H2X),

<•
: a cosoc jS-cos® X : sin )3 sin (/3 + 2X).

(ii) When A/J makes the greateU possible angle with the vertical and

IS therefoie on the point of slipping out of the tumbler.

By reasoning as before, we should liave All and CK on^the sides of

AD and CE respectively, opposite to those they weie on in the first case,

and we should arrive at the lesult obtained there, except that for p we

^must write a, and for X, - X

The result would theiefore be

c : a cosec a=cos- X : sin a sin (a - 2X);

eliminating c and a, we have

bin^ p sin {p+ 2X)= sin* a sin (a - 2X)

;

tan 2X = * » « - a •

sm^ a ct . sin* p cos p

Ex. 8. A uniform rectangular board ABCD rests with the comer A
against a rough vertical wall and its side BC on a smooth peg, the plane

of the board being vertical and perpendicular to that of the wall. Shew

that, without disturbing the equilibrium, the peg may be moved through a
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space /A 008 a (a cos a + b sin a) along the side with which it is in contact,

provided ju do not exceed a certain value : a being the angle BC makes

with the wall, and^a, b the lengths of 4?, BC respectively.

Let G be the intersection of diagonals, i.e. the centre of mass of the

board. Let P be a position of the peg when there is equilibrium. «

The forces acting on the board are, its weight vertically downwards

through G, the reaction of the peg through V and at right angles to BC,

and the reaction of the wall through A, •

The necessary and sufficient condition of equilibrium is that these

three forces should meet in a point, as the magnitudes of the reactions at

P and A will adapt themselves to secure equilibrium, if the above con-

dition holds.

Let the first two foi;ces meet in K ;
join AK, which is therefore the

direction of the reaction of the wall. But AK is not a possible direction

of the reaction at A, if it makes with the normal to the wall an angle

greater than tan~^ fi.

Draw AB and AF making with the normal on either side of it tho

angle tan ju, and meeting Gk in E and F, Draw EM, FN perpendicular

to BC. The condition of equilibrium is then that K should lie between

E and P, i.e. that P s|iould lie between M and N, We may therefore,

without disturbing the equilibrium of the board, move the peg through

the space MN along BC, ^

And ME=EF cos a= 2/u cos a x horizontal distance of G from wall

, = fi cos a (a cos a + b sin a).

We have assumed above that M and N are both between B and C

:

if

either lies beyond P or C, as tlie peg cannot be moved off the board with-
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out disturbing the equilibrium, it can only be moved along that part of
^MN which lies between B and C, It is obvious that if /i be greater than

a certain value, either M or N wiU not lie between B and C.
•

Ex. 4. If one cord of a sash window breaks, find the coefficient of

fiction of the sash in order that the other weight may still support the

window. .

liet ABCD bo the window*IT its weight acting at G its centre of mass.

Fig.89

We assume that the window fits Umaely in the sash, so that there >^iil

be contact at only om point on each side; these will be A and C
respectively.

The unbroken cord at B supplies a force JW vertically npwards
; the

resultant of this and W is ^ir vertically downwards at A, Hence in

order that equilibrium may be possible, the action at C must be along

CA, i.e. the coefficient of friction at C must be not less than tanilCD.

Ex. A right circular cone, vertical angle 2a, rests with its base on

a rough horizolital plane : a string is attached to the vertex and pulled in



178 STATICS.

a horizontal direction with a graduallj increasing force: determine how
the equilibrium will be broken.

Let VAB be a vertical section of thh cone containing the direction of

the string. Let T be the tension of ^e string when equilibrium is about

to be broken, and W the weight of the cone. ^

The different ways in which it is conceivable equilibrium may be

about to be broken are ^ «

(1) the cone being lifted bodily from the plane,
^

(2) the cone tilting^ with one point of the base resting on the plane,

(8) the cone eliding along the plane.

(1) is impossible, as in that case the cone would be in equilibrium

under the action of W and T.

If (2) take place, the cone is in equilibrium under the action of T,*

and the reaction of the plane at the }>oint of contact, which must there-

fore be A; also the action at A must pass through K, i. e. along AV.

This is only possible when the angle AF makes with the vertical, i.e. a, is

less than the angle of friction (\). If, therefore, a be <X, (2) take^ place,

(Art. 112} : if a be > X, (3) occurs.
«

Ex. 6.* A lieavy straight rod, whose sectional area varies as the

distance from one end, rests on a rough horizontal plane. At the other

end, perpendicularly to its length and in the horizontal plane, a force is

applied of gradually increasing magnitude
:
prove that the rod begins to

turn about its middle point.

Let AB be the rod, I its lengtli, B the end at which the force is

applied. Let S be the force at B, when motion is just about to take

place.

Let us investigate whether or no there is a point in AB about which

i

A

the rod may be on the point of turning. If there is such a point, let C be

it, {md let x be its distance from the end A.
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The friction on any point of the rod between C and B acts in the

opposite direction to and that on any point in in the same direc-

tion as fif.

^
•

The friction on any small porti<^ PQ is /a x weight of PQ, and there-

fore the total friction on is yu x weight of AC^ and acts at the c. u. of

AC, Also the total friction on CB is fix weight of CB^ and acts at the

c. M. of CB.
.

•

f By Art. 102/ the weight of AC=ksi^^ and that of AB is kP: also the

distance from A of the c. m. of AC is that of the c. m. of AB is 1^.

.The weight of the remainder CB is therefore ic (P - oc®), and the distance

of its 0. M. from A is J (i® - a5*)/(Z® - *®).

taking momenta about A for the equilibrium of the rod/we have

(P - 1?)
. 3 [Jr J}

"

Also resolving at right angles to the rod, we have

fiK{P- x^) ~ fiKo^= .9 (2)

;

eKminating S from equations (1) and (2) * •

2(Z»-2a:3) = 3Z(Z2-2j»);

4jr»-6Zx2+ P=:0.

Since x —^1 satisfies this equation, the rod must begin to turn about

its middle point, as it will turn about it rather than slip there (Art. 112).

Ex. 7.* A square lamina is supported in a horizontal position by means

of four rough pegs on which its angles A, B, C anti D rest. A horizontal

force is applied at C at right angles to A C and gradually increased until

it moves &e lamina. Shew that, if the pressures on the pegs be equal,

the lamina will begin to turn about the angle A.

12—2
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We know (Art. 112) that the square will be on the point of turning

about J, provided that all the necessary equations of equilibrium can be

satisfied on such an assumption, witlfi)ut requiring the fpction exerted

at A to be the maximum.

Let P be the applied force which will cause the lamina to be just ofi

the point of motion. Let 0 be the point of intersection of the diagonals

of the square. Let Q be the maximum friction that can be exerted at any
of the comers of the square—then if rotation is about to take place about

A, the force at i) will be Q along DC, that at C, Q opposite to P, and

that at Q along CB.

Taking moments about A^ we have

P . AC=Q(AI> + AC-hAB),

..P=Q(l + ^2).

The friction at A must be equal to the resultant of the other four*

forces, its magnitude is therefore

+ iQ ^/2)2} , i.<>. zero.

A is the pbint therefore about which the square will begin to turn. .

Kx. 8. A heavy particle is placed on a rough inclined piano whose

inclination is equal to the angle of friction : a thread attached to the

particle and passed through a hole in the plane which is lower than the

particle, but not in the line of greatest slope : shew that if the thread be

very slowly drawn through the hole the particle will describe a straight

line and a semi-circle in succession.

Let 0 be the hole;* OA the horizontal line in the inclined plane

through O. Let P be the particle, W the resolved part of its weiglit in

the plane. The maximum friction that can be exerted on it is W
therefore. Let S be the angle the string PO makes with a line of greatest

slope. Let 0 be the angle the direction of motion at any instant, and

therefore the friction, makes with a line of greatest slope. Let T bo the

tension of the string.
,
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(1) When P is above OA,

The resolved parts of forces down the line of greatest slope

• = TF+ irtjos $ - TFcos 0.

^
Those perpendicular to the same line= T sin ^ - W sin 0.

Since the particle is drawn very slowly

^

each of these forces must be

indefinitely small. Therefor
j 0 and T are both indefinitely small. Hence

the*particle moves down a line of greatest slope, until it reaches A,

(2) When Pis at il.
'

The forces now are W- W cos 0 and T-W sin 0, whence we infer

that 0=0, i.e. the particle moves off initially at right angles to OA,

The particle, however, cannot remain any longer in the same line of

greatest slope, and since it must always be approaching 0, it describes

• a curve, which has a line of greatest slope as tangent at At and which

passes through 0.

(3) When P is bo^ow OA .

^ B M 0

In this case we deduce, as before, that

ir(l-cob 0)-rcos i?=0,

ir sin 0- J sin ^=0.

The solution 7'=O= 0 is inadmissible here, since we know that the

particle cannot continue to move down a line of greatest slope.

1 — cos 0
Eliminating T, we have ^'^=oot

9 tan l0=cot^,

Draw PB perpendicular to OP, meeting OA in B: describe a semi-

circle through P, on OB as diameter. •

Iiet*SP be the tangent at P to this circle. Then

Z BPM= L .SfPP+ Z PPJlf=ir - 2MPO=4».



182 STATICS.
4

Therefore the direction of motion at P is along the tangent to the

circle, i.e. the next point to P in P’s path is on the circle. Similarly

the next consecutive point to that and So on. ,

Hence the semi-circle is the particle’s path, and as this is true always

so long as P is below OA^ the semi-circle must pass through i.e. A
and B are coincident.

c
t

Ex. 9.* A uniform heavy beam A B is placed with the end A upon a

rough horizontal plane add a point C of its length touching a rough

heavy sphere whose point of contact with the plane is P. Prove that if

there is equilibrium the magnitude of the friction at each of the three

points A, C, D will be the same. If the coefficient of friction be the same

aydiljh point, the point at which slipping is most likely to take place

wifffie A or C7, according as A and D lie on the same or opposite sides of.

the vertical through B.

Let 0 be the centre of the sphere, O the middle point of the beam.

D
Ffg.9B

Considering the e^jhilibrium of the sphere and beam together, since

the horizontal forces acting on them are the ffictigns at A and P respec-

tively, they must be equal.

Also from the equilibrium of the sphere, by taking moments about 0,

deduce that the friction at (7=that at P=:that at A,
^

Let us suppose that the sphere is slowly moved away from A, until

equilibrium is about to be broken ; what will be the nature of the motion.
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\7hi0h ifl about to happen ? Of the three forces acting on the s^diexei

,

two, the weight and the reaction at D act through D, therefore the third,

the action at C, is along CD, and the action at D is within the angle

CDO. Hence slipping cannot be about to occur at D, as then the angle

iCDO, and therefore the angle OCD, wbuld be greater than the angle of

friction, which is impossible, as it is the angle the action at 0 makes

with the normal. ,

Let DC produced meet the vertical through Q in H': join AH, AH
is the. direction of the action on AB at A,

Hence either the angle AH makes with the vertical, or OCD must be

the angle of friction,, as slipping must occur at either A or C.

The slipping occurs at ^ or C

according as i AUG is > or <: z OCD, i.e. L ODC, i, e. L

according as G is nearer A or D,

according as A and B are 011 the same or opposite sides of the

vertical through D. ^
•

Ex. 10.* A block ill the shape of a fectangular parallelepiped of

weight 7r roi^s with one edge horizontal on a rough inclined plane;

against the block rests a rough sphere {W') whose radius is' less than fbe

thickness of the block. The inclination of the plane is gradually increased

until equilibrium is no longer possible : shew that if the block tilt, the

sphere will slide or roll along the plane according as the limiting inclina-
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% tion (^) of the plane to the horizon is > or < ; and shew also that if

the block slide, the sphere will slide or roll according as X (the angle of

friction) is > or < and that in thenast case, 6 is giveq by the equa-

tion sin (X - ^) = ir' sin 9 (cos X - sin X), X being supposed the same
everywhere. •

Let 0 be the centre of the sphere, A and B the pohits where it

touches the x^lane and block respectively,: C ttio point of the block neai^est

to A, Let the inclination of the plane (^) be such that cquilibiium is

just on the point of being broken.

There are only two motions of the block conceivable,

(1) turning about its lowest edge,

(3) sliding down the xjlane.

Whichever of these two ways the block moves, the sphere will either
*

(a) blip at h and roll at or

{^) roll at B and slip at .1.

The actions at A and B on the sphere must meet in the vertical

through 0, in the point 11 say: join All, BlI, these will be the directions

of the icspective reactions. c

As wo have seen either (a) or (/3) must occur, one of the angles OBII,

OAK must equal X, and as the other angle must be less than X, it is the

greater angle of tlie two tliat is equal to X.

We shall .prove that L OBII is ^ or - L OAIJ, according as 9 is

< or >Jir.

Ifdis < Jt, lAOHI^ lBOU,

Allis ^ nil,

and us BO = OA, and OH is common to the Iwo triangles OBll, OllA, ,

I OBII is ^ z 0.1//.

Similarlyit can be sliewn that if ^ is > J?r, z 0^7/ is > z OBII.

Hence whether (1) a* (2) happen to the block the sphere will loll or*

slide at A, according as ^ is < or > #

If (2) and (iS) happen, d=X, and X is therefore > ^ir.

To find 9 when (2) and (a) happen,

* Let R be the normal reaction at B, then taking momenta about A for

the equilibrium of the sphere,

IV* a sin (1 + tan X) a. .
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Resolving along the plane for the equilibrium of the block

W sin 6 +R=(ir ooa tan \) tan X.

Tl" (ski ^ - cos ^ tan X) (f + tan X)= W' sin 0 (tan* X - 1),

W sin (X - (?) = Tf" sin 0 (cos X - sin X),

Since '0 cannot be greater than X, this equation shews that if X be

i'lr, (2) and (a) cannot happen.

EXAMPLES.

1. A body is supported on a rough inclined plane by a force acting

along it. If the least magnitude of the force, when the plane is incUned

jU an angle a to the horizon, be equal to the greatest magnitude wheu the

])lane is inclined at an angle shew that the angle of friction is J (a ~ j9).

2. Two equal particles on two inclined planes are connected by a

string which lies whohy in a vertical plane perpendicular to the line of

junctiqp of the planes, and passes over a smooth peg virtically above

this line of junction. If, when the particles are on the point of motion,

the portions o^the string make equal angles with the vertical, shew that

the difference between the inclinations of the planes must be twice the

angle of friction.

3. A uniform rod is resting on a rough inclined plane, and is moveable

on tilie plane about one end which is fixed : shew that when it is about to

slip it makes with the line of greatest slope the angle sin~^ (fA cot a).

4. Spheres whose weights are IF, W' rest on different and differently

inclined planes. The highest points of the spheres are connected by a

liorizontal string jierpendicular to the common horizontal edge of the

two planes above it. If fi the coefficients of friction are such that

each sphere is on the point of slipping down, fjLW=/ji.'W\ *

5. Two equal particles rest upon two equally rough in^ned planes,

being connected by a string passing over a smootl^ pulley at the common
vertex, the vertical plane iwhioh contains the string being at right angles

to each inclined plane. If the we ght of one particle be increased by

a certain amount the system is on the point of motion, and if instead the

weight of the other particle be decreas^ by the same amount the system

is again on the point of motion in the same direction as before. Prove

that the difference of the inclinations of the two planes is double the

angle of friction.
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-6. A lamina is suspended hy three strings from a point; if the

lamina be rough, and the coefficient of friction between it and a particle

placed upon it be constant, shew that the boundary of possible positions

of equilibrium of the particle on the lamina is a circle.

7. A unifoim heavy rod is in equilibrium in a rough spherical cup*];

and the length of the rod subtends a right angle at the centre of the

sphere; find the greatest angle the rod cau make with the horizon in

terms of the angle of friction.

8. Two fixed pegs are in a line inclined at a given angle a to the

horizon. A rough thin rod rests on the higher and passes under the

lower, the higher peg being lower than the centre of gravity of the rod.

The distance of that point from the pegs being a and h respectively,

shew that when the rod is on the point of motion (h + a) fi= (b-a) tan a.

9. Prove that the 'direction of the least force required to draw'cT

carriage is inclined at an angle 0 to the ground, where asm0= h sin 0,

a being the radius of the wheels, b of the axles, and tan 0 the coefficient

of friction of (he axles.

10. A light ^ring is priced over a rough vertical circle, ani a uni-

form heavy rod, whose length is equal to the diameter of the circle, has

one end attached to each end of the string, and rests in a horizontal

position. Find within what points on the rod a given mass may be placed,

without disturbing the equilibrium of the system ; and shew that the given

mass may be placed anywhere on the rod, provided the ratio of its weight

to that of the rod does not exceed } - 1), where fA is the coefficient

of friction between the string and the circle.

11. Two particles of unequal mass are tied by fine inextensible strings

to a third particle. They lie on a rough horizontal plane with the strings

stretched at a given angle to each other. Find the magnitude and direc-

tion of the least horizontal force which, applied to the third particle, will

move all three.
,

12. An equilateral triangle, of uniform material, rests with one end

of its base on a rouglv horizontal plane and the other against a smootli

vertical wall: shew that the least angle itsibaro can make with the

horizontal plane is given by the equation cot0—2fA+i,JSf /i bemg the

coefficient of friction.

* 13. Two weights P, Q are connected by a string and rest one on

each face of a double inclined plane, the string passing over the common
vertex, which is smooth : at first P is about to slip downwards and when
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the weights are interchanged, it is found that P is still just about to slip

downwards : shew that if X, V are the angles of friction for the two

planes and a, ^ the angles th^ rcepectively make with the horizon, then

cos a cos X'= cos p cos X.

14. Two rough spheres, the larger of which is fixed, rest on a rough

horizontal plane, and a uniform board rests symmetrically upon the top

of them, its centre of gravity being midway between the points of con-

tabt: shew that, if tan X' and tan X be the coefficients of friction between

the board and the larger and smaller spheres respectively, and motion be

about to take place at both points of contact, tan (X' - X)= sin 2X.'

15. Two rings, each of weight w, slide upon a vertical semi-circular

wire, diameter horizontal and convexity upwards. They are connected

Jjjra light string of length 21 (supposed less than the diameter 2a) on

which is slipped a ring of weight W. Shew that when the two rings are

as far apart as possible,*the angle 2a subtended by them at the centre

is given by
(
1^+ 211?)* tan^ (a + c) (Z^-a®8iu*a) = W^a^siii^a, e being the

angle of friction. *

• •

16. An isosceles triangular prism is placed with its edge horizontal

and its base wi a rough inclined plane, the inclination of which is

gradually increased: shew that the prism will tumble or slide according

as is > or <3c/2/i. c is .the base of a section perpendicular to the

edge and h the height.

17. Two hemispheres, of radii a and 5, have their bases fixed to a

horizontal plane, and a plank rests symmetrically upon them. If /u be

the coefficient of friction between the plank and either hemisphere, the

other being smooth, prove that, when the plank is on the point of

slipping, the distance of its centre from its point of contact with the

smooth hemisphere is equal to (a ~ 6) /^.

18. A disc in the shape of a sector of a circle lies on a rough table

{fi) and is fastened at the centre by a peg. Shew that the least force

applied along any tangent to the sector necessaiy'to turn it round is to

the weight of the disc,as : 3.

19. A rod rests partly within and partly without a box in the shape

of a rectangular parallelepiped, and presses with one end against ipe

rough vertical side of the box and rests in contact with 'the opposite

smooth e^e. The weight of the box being four times that of the rod,

shew that if the rod be about to slip and the box about to tumble at the
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same instant, the angle the rod makes with the vertical is

JX + 4oo8~i(icosX),

where X is the angle of friction.
*

20. Three equal heavy rough cylinders are placed in contact alon|[

generating lines, lying on a horizontal plane: and two other such

cylinders are similarly placed upon them : flSid the frictions and rcaclj^ons

at the instant when the system is bordering on motion.

21. A sphere (radius a) whose centre of gravity is distant c from its

centre, rests in limiting equilibrium on a rough plane, which is inclined

nt an angle a to the horizon: shew that the sphere may be turned

through the angle 2 cos~' {aje cosec a) and still be in limiting Equilibrium.

22. Assuming that the limiting friction consists of two parts, one

proportional to the pressure, and the other to the surface in contact,'

shew that if the least force which can support a rectangular parallelepiped,

whose edges qre a, b, and c on a given inclined plane be P, Q, Ji, when

the faces in contact arc be, ca, ah respectively, then * '

(g-P)6cV(P-P)nc + (P-0)ab^0.

23. A rough rod rests over a rough sphere, one end of the rod press-

ing on a rough horizontal plane, on which the sphere rests. Shew that

there will be limiting equilibrium for the whole system when the rod

makes an angle 2X3 with the plane, if the weight of the sphere is to the

weight of the rod in the ratio sin(X2-Xj) : Bin(X2 + Xi), where X^ is the

angle of friction between the rod or sphere and the plane, and Xo the

angle of friction between the rod and sphere.

24. A rectangular lamina rests in a vertical plane with the middle

point of one side in contact with a rough peg, coefficient of friction 2, and

a point in the opposite ,side in contact with a smooth peg. If the line

joining the pegs make an angle a with the vertical, and the sides in contact

with the i)egs an angl%^, when the lamina is just about to slip, shew that

tan(^.+ a)=l-2tan^. •

25. A uniform heavy rod PQ is in equilibrium with its ends on a

rough parabola whose axis is vertical and vertex downwards : shew that

th*e line joining the intersection of the tangents to the parabola at P, Q to

the intersection of the normals makes with the vertical an^angle not

greater than the angle of friction.
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26. A pair of equal rod? •ABt AC are liinged together at A and have

rings at By C

:

these rings are free to slide along fine rough straight wires

OB'y OC' in the same vertical plat|6 equally inclined at an angle a to the

vertical. Shew that if X be the angle of friction, in the limiting positions

equilibrium the angle between the rods is either

2 tan”^ 2 cot (a - X) or 2 tan“^ 2 cot (a -f X).

27. A right-angled isosceles triangular lamina rests with its base

angles on the arc of a rough .circular wire whose plane is vertical and

radius equal to either of the equal sides of the triangle.^ If the equal

sides be horizontal and vertical in the limiting position of equilibrium

the coefficient of friction is J {aJu - ‘‘l}-

28. Two uniform rods of equal weight, but different lengths, aio

‘f^nted together and placed in a vertical plane over two rough pegs in

the same horizontal line : if a, be the inclinations of the rods to the

horizon, 6 that of the reaction at the hinge, prove that when the rods

are on the point of slipping, 2 tand=cot (/3+X) -cot (o -X), where X is

the anglo of friction. •
*

20. An ellipse is placed with its plane vertical and major axis hoii-

zontal so that ^no of its vertices A rests against a rough vertical wall.

P is a point on the wall vertically above A, and a string of length 21

wliich has its extremities fastened at the foci S, II passes through P,

Find the least value of the coefficient of friction consistent with the

equilibrium of the ellipse.

30. A uniform ladder (length 2a) rests at an angle a to the vertical

against a smooth horizontal rail at a height h from the giound. If X bo

the angle of friction, between the ground and the ladder, shew that a man
of weight 71 times that of the ladder may ascend a distance along the

ladder, {2 (n + 1) h sin X sec (o - X) cosec 2o - a}
/
n, without the ladder

slipping.

31. A uniform beam AB lies horizontally upon two others at

points A and C; prove that the lecst horizontal force applied at B, in q
direction perpendicular tOBA wluch is able to move the beam, is the less

of the two forces /aW. anR / where JjB=2a, AC~2>, }V= weight

of beam, and /i=coeffioient of friction. \ ,

32. A uniform rod of mass M rests in a horizontal position with its

•ends on the oircumference.pf a rough vertical circle and subtonds an angle
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2a at the centre* An insect of mass m starts from the middle point of the

rod and crawls gently towards one end. Prove that if the angle e of

friction be less than 45® it will be able tp reach the end of the rod without

disturbing the equilibrium provided sin 2e>m sin2a/(ilf+94).

Examine the case when £>45®. • «

83. A number of equally rough particles are knotted at intervals on

a string, one end of which is fixed to a poiift on an inclined plane. Shew
that, all the portions of the string being tight, the lowest particle is in

its highest possible position when they are all in a straight line making

an angle sin~^ (tan X cot a) with the line of greatest slope, X being the angle

of friction, and a the inclination of the plane to the horizon. Shew also

that, if any portion of the string make this angle with the line of greatest

slope, all the portions must do so too.

34. A uniform rod, length 2a sin a, is placed within a rough verti^

circle, radius a, and is on the point of motion, the coefilcients of friction

%t its upper and lower ends are tan \\ tan X
:
prove that if 0 be the in-

clination to the vertical of the line joining the centre of the circle to the

centre of the rod •

,

si^{X + V)
~~
2 cos (X + a) cos (X' - a)

‘
•

Examine the case when a + X=iir.

35. One end of a heavy rod AB can slide along a rough horizontal

rod A (/to which it is attached by a ring ; B and C are joined by a string : if

ABC be a rigSit angle when the rod is just on the point of slipping, and a

the angle between AB and the vertical, shew that the cocificient of friction

sin a cos a
IS .

1 + cob^a

36.

A circular lamina, whose centre of gravity is at an exoentrio

point, rests in a vertical plane supported by the loop of a rough string

which is attached to two* fixed points. If the lamina be on the point of

slipping and the radius containing its centre of gravity be inclined at

right angles to the radius bisecting the portion of the string in contact

with the circle, the angle of contact 0, is given by *

1+^ a

c’

a being the radius of the circle and c the distance of its centre from its

centre of gravity.
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87. A rough oiroular disc of radiuB.a has ito centre of gravity at a die*

tance b from the centre, and rests in a vertical plane on two pegs placed at

a distance apart < ai^ > 26 in a horizontal line: shew that

equilibrium is possible for dll positions of the centre of gravity provided

angle of friction be not less than sin^^ (6/a).

38.

Two equal heavy rods AB, BC, each of a length 2a, joined together

at Bf hong with AB resting on a rough peg B. If /a be the coefficient of

friction, and 2a the angle between the rods, shew that AB will slip on

the peg if PB<a cos a (cos a - /a sin a) or > a cos a (cos a+ /a sin a).

39.

A uniform isosceles triangular lamina rests in a limiting position

of equilibrium in a vertical plane between two rough pegs in the same

horizontal line
:
prove that 3c cos X sin {20+ 2a- X)

=

2p sin 2a cos (^+ a),

tVflere 0 is the inclination of one side to the horizon, X the angle of friction,

2a the vertical angle of the triangle, p the perpendicular from the vertex

on the base, and c the distance between the pegs.

40.

• Three rough particles of masses m, are^rigi^y connected

b} light smooth wires meeting in a point O, such that the particles are at

the vertices of /m equilateral triangle whose centre is 0., The system is

placed on an inclined plane of slope a, to which it is attached by a pivot

•through 0
;
prove that it will rest in any position if the coefficient of

friction for none of the particles be less than

tan a

Wlj + JW-2+ JM3
(?Wi®

+ - TWaWij - - WiWij]A
41. A cylindrical rod with hemispherical ends rests in a vertical

plane against two equally rough planes, one horizontal, the other

vertical : determine the limiting position of equilibrium, and shew that

if the coefficient of friction be not less than the ratio of the length

of the straight part of the rod to the total lex\gth, it will rest in any

position.

' p

42. A uniform heavyjod of given length rests perpendicularly and

liorizontally across two rough para'M Jborizontal rails which support the

rod at a quarter of its length from t «uh end. One end of the rod is polled

perpendicularly by a string in a downward direction making an angle $

with the vertical : shew that the rod will move at both points of support

at the same time when d=:tan*'^2/A; and in this case find the tension of

the string.
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43. To the ends of a heavy rod are attached rings which slide on the

circumference of a rough vertical circle. Find the force perpendicular to

its direction, acting at a given point of it which will just move the rod

when in any position : and prove that for all positions it '^ill be greatest

when the rod is inclined to the horjzon at an angle «

tan“^ (cot 26+ cos 2a cosec 2e),

wheie 2a is the angle subtended by the ro(^ at the centre and ‘tan ^the

coefficient of friction.

44. A straight uniform rod of length 2c is placed in a horizontal

position as high as possible within a hollow rough sphere of radius a.

Prove that the line joining the middl point of the rod to the centre of

the sphere makes with the vertical an angle tan“i - c*).

45. A semi-circular arch, composed of an odd number of equal afl<T

s'milar smooth blocks, is constructed upon a rough horizontal plane :

prove 4hat the number of blocks must be 3: and that the coefficient

of friction must be not Also prove that the ratio of the internal

to the external arch must not be *> the positive root of the equation

2 v/3(a;2 7r(2x»- ar-3) = 0. ,

If the blocks, except the key stone, be rough, and if tbeir number be

w, greater than 3, prove that the angle of friction at the pth joint from the

base must be not cot* ^
|
(^ - 2/») tan tt /2« }

- pir
/
w.

46. Twer particles of equal weight w connected by a rod without

weight rest on a rough plane inclined to the horizontal at an angle a : the

coefficient of friction p* tan a for one particle is less, and that for the other

p tan a greater, than tan a. Pro\e that, when both are on the point of

moving, if in the plane a triangle A BP be constructed whose sides AB^

BP, PA are 2, p\ p, and 0 be the middle point ot AB which is drawn in

a line of greatest slope^then OP is the direction and OP ,w sin a is the

tension of the rod.

47. An elliptical cylinder placed in cont^t with a vertical wall and

a horizontal plane is just on the point of motion When its major axis is

inclined at an angle a to the horizon. Determine the relation between tbe

coefficients of friction of the wall and plane ; and shew from your result

tHat if the wall be smooth, and a be equal to 45^, the coefficient of

friction between the plane and cylinder will be equal to where e is the'

eccentricity of the transverse section of the cylinder.
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48. Two equal spheres rest on a rough horizontal plane, the distance

between their centres being e

:

and a third sphere rests on them
;
prove

that the normal pressure b6twee%elther sphere and the upper one is equal

to half the wdight of the upper sphere, and that the necessary and suffi-

cient condition of equilibrium is a + b>\e cosec 26, where e is the angle

of friction, and a, h the radii of the spheres.

If this condition is not fulfilled how will the lower spheres begin

to niove ?

49. An elliptic lamina of eccentricity e rests upon a perfectly rough

equal and similar lamina, the two bodies being symmetrically situated

with respect to their common tangent at the point of contact. If a be

the inclination of the major axis of the fixed ellipse to the hprizon, and 0

be the inclination, measured in the same direction, of the major axis of

tna moving ellipse in a position of equilibrium, then

sin ^ + a)= <?* sin 6 cos - a).

50.

xV. chain is f'^rmed by 2u rods, equal in leugt]|i and weight,

smoothly jointed together. The two extremities can xgove by rings on a

rough horizontal rod, coefficient /4. Bhew that in the limiting position

of equilibrium 4he inclination of cithei of the upxier rods to the vertical is

tan ^
2n/4

2m -“I*

51.

A lough elliptic cylinder rests with its axis hoii/ontal upon the

ground and against a vertical wall, the ground and the wall being equally

rough; shew that the cylinder will be on the point of slipping wHen its

major axis plane is inclined at an angle of ^ir to the vertical if the

eccentricity of its principal section be «^[2sin \ (sin X +cos X)] , where X is

the angle of friction.
^

*52. An elliptic lamina moveable about its focus in a vertical plane

rests against a smooth inclined plane, the major ftxis of the ellipse being

horizontal. The lower surface of the piano is rough and rests just on the

point of moving on a horizontal table. ’ If u, & b8 the semi-axes of the

ellipse, and p the perpendicular it'om the ceniie on the inclined plane,

shew that the coefficient of fiiotioi •J{ (p® - »/’)/(«* }.

58. A circular ring of weight hangs in a vertical plane over^a

rough peg, and to the lowest point of the ring a string is fastened.. It is

kept always horizontal in the piano of the ring, and its tension is

gradually increased from zero. J^ove that the ring will slip on the peg

G. • 13



194 STATICS.

117)1611 the tension of tlie string reaches the valae W tan (Seine) -'e}»

e being the angle of friction ; and explain what happens if 3 sin e > 1.

If the tension be still farther increased to a given value find the

position of equilibrium.

54.

A ring of diameter a is fixed with its plane making an angle a

with the vertical, and a uniform rough cylinder is supported by being

slipped through the ring: prove that the length of the cylinder must be

not less than

2a + a Bin » . cot (ff± a)

.

Sin 2\.sin(d:isa)

where X is the angle of friction, and d is the inclination to the axis of the

cylinder of a plane section whose major axis is equal to a. (The sign to

be taken in the above expression depends on whether the cylinder and

ring make angles with the vertical on the same or opposite sides.)
^

55.

A cylinder is laid on a rough liorizontal plane, and is in contact

with a rough yertical wall, the coeflicients of friction being equal; a string,

coiled round it at right angles to the axis, passes over a fixed pulley and^

sustains a weight which is gradually increased until equilibrium is broken.

Determine the nature of the initial motion.

56. Two uniform beams, of the same material and thickness but of

different lengths, •rest each with one end on a rough horizontal plane, and

their other ends connected by a smooth joint. If equilibrium be about to

be broken sliew in what way it will happen.

57. Two weights, P, Q, whose coefficients of friction are
/4i, each

less than tan a, on a rough inclined plane of angle a, are connected by a

string which passes through a fixed pulley A in the plane. Prove that if

the angle FAQ be the greatest possible the squares of the weights of P, Q,

are to one another as 1 - /n/ cot^ a is to 1 - cot* a.

58. A rough rod is laid on a horizontal table and is acted on by a

horizontal force perpe dicular to its length. Find about what point the

rod will begin to turn, the point of applicatfon of the force trisecting

the rod.

59.

A cubical uniform block is placed on a rough inclined plane and
has two of its faces vertical: it is attached by a string parallel to a line

of greatest slope of the plane passing from the middle point of its upper

horizontid edge to the middle point of the nearest horizontal edge of
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Another equal similarly situated cube. If /k (less than unity) be the eoeifi- *

dent of friction for the lower block, the equilibrium will be broken when
the inclination of the plane to thn horizon is given by 2/as 3 tan 0 ~ 1, by
the higher cube tumbling over, provided the friction coefficient for the

Jiigher block be great enough. '

60. A heavy rod, of length 21, rests horizontally on the inside rough

suiface of a hollow circular cone, the axis of which is vertical and the

vertex downwards. If 2a is the vertical angle of the cone, and if the

coefficient of friction isless than cot a, prove that the greatest height of

the rod, when in equilibrium, above the vertex of the cone is

. J 1 + cos2 a+ sinS a^(sin* a+ 4/a*)) i

•Cl. A cubical block, and a cylinder whose diameter is equd to a side

of the cube, are laid upon a rough plane, and are attached to each other

by a cord coiled round the middle of the cylinder, and fixed to the middle

point of one of the edges of the cube which is parallel to t)ie axis of the

'Cylinder. If the plane be then slowly raised (the cubq being uppermost)

imtil equilibrium is broken, what will be the nature of the initial motion?

•
62. Two particles A and £ of weight W are connected by a thin

weightless rod and placed on a rough inclined plane at an inclination to

the linaof greatest slope, the coefficient of friction for each particle being

ju. A force F is applied to A the lower particle in the direction BA and

its direction gradually turned through an angle 0 in the plane. Find the

nature of the initial motion Of the system. If the particles be placed

along a line of greatest slope, prove that both will slip when

_ 4ir* sin a (sin a - /a cos a)

2FW{fLG6%a-2«aia) ’

and find the limits between which F must lie when a < tan'^i/A.

\
63. Two hemispheres (centres A, B and weights Wi and Wa) are

placed with their rims on a rough horizontal tabl9 and in contact, and a

rough sphere (centre O aifd weight W) rests on them, of such a radius

thatACB is a, right angle. The e^ esn is on the point of moving shew

that the sphere will begin to slip o/or the larger hemisphere, whilst the

larger or the smalley hemisphere will begin to slip according as •

{Wi-WjisvOL€< or > H^,y2 cos(a+Jir) sin (a+ e),

where e - |ir is the angle of friction, and a is the angle CAB, t

•
• 18—2
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64. A oylindrical rod with hemispherical ends and another cylinder

are in contact on a rough plane, the axis of the former is vertical, that of

the latter horizontal. The radius of th« horizontal cylinder is such that

the other touches it at a point in the rim of its upper hemispheiical end.

The horizontal cyhnder is gradually moved along the plane in a direction*

perpendicular to its axis, the two remaming in contact . shew that equi-

librium is no longer possible unless \ be > and if X be > iw, equi-

librium is impossible when the rod makes an angle > B with the vertical,

where B is given by the equation 7i cos 0= /i -i- (/n- a) cos 2X.

Explain how the equihbiium is broken in tliis c&se

assthe radius of the hemispherical ends, 2/i = th6 length of the

generating lines of the rod, and X=the angle of friction, supposed the

sajme everywhere.



CHAPTER VL

VlttTUAL WORK.

• 113. Def, If the point A at which a force P is acting

be displaced to any point B, the distance AB is called the
displacement of the point.

•

If from By Bjy be drawn perpendicular to P*s line

of action, the product P . AN is called the Work done by

B

the force P during the displacement. If N falls on that

side of A towards which P acts, the work is said to be
positive, if on the other side, negative. We may say

then that the product of the force into the projection of

the displacement, along the direction of the force, gives

the algebraical as well as the numerical value of the work
done during the displacement.

^

Whdn the work donees negative, it is often said to be done agaiiut

the force.

* If the displacement does not really take place but^ is

only ima^ma to do so, it is said to be a Virtual Displaoe-

'ment, and the work which would be done during such
a displacement is called the Virtual Work,
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114!. Prop.' If a particle acted on system of
forces receive any virtual displacement y^tever, iJie alge-

braical sum of the virtual w&rh done by the different

forces during the displacement is equal to the virtual work
done by the resultant

Let 0 represent the actual position of the particle, 0^

the position to which it is supposed displaced
;
let P^, P,,

Pg, &c,, be the forces acting on the particle
; 0^, 0^, 0^, &c.,

the angles their directions make with 00\

The A. S. of the virtual work done by P^,* P,, Pg, &c.

=sP^ ,
00' cos ^i + Pj . 00' cos Pg ,

00' cos •••

= 00'
.
(Pj Cos ^i + Pp cos ...)

= 00' X A. s. of the resolved parts of the forces in direc-

tion 00'
,

= 00' X resolved part of the resultant in direction 00'

= projection of Od' along the directipn of the resultant

X the resultant

= the virtual work done by the resultant.

^
It should be observed that in the above proposition the

displacement the particle receives is virtual, and entirely

unrestricted both as regards magnitude and direction.
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'Cor. If /^rHde m e^Ujbrivm under the action of
‘any system of f^pes receive any virtual diemlacement

tohatever, the cdgwraical dlim of we virtual wot* done hy
the differentforces is zero. '

, .
'

• « V

. 115. If a system of particles be in equilibriam under
the action of external Sna internal forces^ and anyliumber
of particles of the system receiye any virtual displacements

wlmtevcTy we have seen that the A. s. of the virtual work
done by the fotbes on each particle is zero : hence the A. s.

of the virtual work done by all the forces^ external and,

internal, is zero.

^ Prop. If a system of particles in equilibrium under
the action of any system of exterml forces together with

internal forces, receive any indefinitely small virtual dis-

placement whatever, which does not alter the configuration

formed by the particles, the A. s. of the mrtea? work done

by ike external forces alone is zero*or more strictly speak-

ing, is of an order higher than that of the displacement

In this proposition the displacements which the particles

receive are very much restricted as compared with that in

the theorem of Art. 114: here the displacement must be
indefinitely small, there it might be of any magnitude:

the displacements, too, of the different particles are also,

so connected, tliat if the particles formed a rigid body,

these displacements would not involve any alteration in

its shape or size, but only an alteration of its position as

a whole. •

We shall first prove that if the displacements be of

this character, the virtual work done bj^any internal force

• s'

1

A K ^S S' 8 H

(the action exerted by B) on the particle A is eqiud

oj^xwite in sign to that done by the reaction exerted hjA
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‘ on the partible B, Let R be the action exerted by J9’on

the particle A, along AB in the direction indicatea, then

the reaction exerted by -4 on 5 fe in the opposite direction.

Let A\ R be the points to which A, B are supposed dis-

placed> then by the conditions relating to the nature of
the displacements, the angle (d) between A'B' and AB
is small, and the length A'R= AB!^

Draw -4'if, RN perpendicular to AR
Then MN= A'R cos 6 = A**R ultimately, ^AB,

AM^BN.
The virtual work done by action R on A =R , AMi

i that done by reaction Ron B= —R , BN^ —R . AM. r-

Hence the A. s. of the virtual work done by any action

and the corresponding reaction is zero. But the internal

forces consist entirely of pairs, each pair being made up of

an action and the corresponding reaction: therefore the A.S.

of the virtual work done byM the internal forces is zero,

since that of each pair is so. We have seen too that the
.

A. s. of the virtual work done by all the forces, both external

and internal, is zero, so that that of the virtual work done
by the eccterml forces ahne must be zero also.

In obtaining this result we have neglected quantities

depending on the powers higher than the first of the dis-

placement, so that strictly speaking the A. S. of the virtual

work done by the external forces is not zero, but of an
order higher than the first power of the displacement.

Gor, If in any'system of forces in equilibrium there

are two forces equal to one another, and acting in opposite

directions along tHe straight line joining the particles on
which they respectively act, tlie two forces will not enter

into the equation of virtual work, provided the virtual

displacemepts of the two particles produce no alteration

in'tiie length of the line joining them, or at any rate one
ofthe second order only. Hence, if we have two bodies in

contact, the virtual displacement does not alter the,
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points in contyict, the action and reaction between the two
bodies will not appear in the equation for the two bodies

together. * Also, if two paifticles are connected by an in*

extensible string or rod, and they receive displacements

which do not involve breaking or bending the string

or rod, the tension of the string, or in the case of the rod,

the# tension or thrust, \fhichever it exerts, will not enter

into the equation of virtual work for both particles

together. This may easily be extended to the case of

two particles connected by an inextensible string which
passes round a smooth fixed bod^: for the distance

between them measured along the string is constant, so

long as the string neither slackens nor breaks.

116 . In applying the above proposition to the case of

a rigid body, we may suppose the displacement any slight

displacement of the body as a whole not involving any
change of shape or size. If wo wish lo ascertain the inter-

nal forces between one portion of a body and another, we
may suppose that the first portion is displaced as a whole,

without any displacement of the remainder, in which case

the actions of this last portion on the first will enter bxto

the equation of virtual work.
•

In solving problems by the pimciple of virtual work, it is often

convenient to make such a displacement that a force, whose magnitude

we do not wish to ascertain, may not enter into the equation of virtual

work. In that case the virtual work done by that particular force most

be zero, or at any rate of a higher order in small quantities than the

displacement. For that to be the case the particle on which the force

acts must be virtually displaced in a direction making with the force,

either a right angle or an angle differing from alright angle by an in-

definitely small quantity.

From the way in which the yi iviple of virtual work is sometimes

stated, the student is apt to get the idea that it is only for certain kindfi

of displacements, and for displacements of a certain extent that tjie

principle holds. It is quite true that in order to avoid introducing

certaiu forces it is often convenient to make only certain displacements

such as those mentioned in Arts. 116 and 117. It must however bef
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borne in mind that, by the first paragraph of Art. 115, the principle in

its most general form may be applied to any body whatever^ under the

action of any system of forces. c

In the following propositions, it is understood that tho
displacements are indefinitely small.

i

117. Prop. Tlie work done by the tension of an in-

exte^mhU sti'ing or rod, when one end is fixed and the

other attached to a particle which is displaced so that

the string or rod is neither broken nor bent, is ultimately

of an ormr higher than the first

It is obvious that the particle can only move in a
direction which is ultimately at right angles to the rod^oi

string, i. e. at right angles to the tension.

Prop. Jf a body resting in contact with any smooth
curve or surface, receive a displcuiement by sliding along

the curve or surface, t)ie work done by the reaction of the

curve or surface on the body is ultimately tf an order

higher than the first

In this case the particle situate at the point of the

body touching the curve or surface is the one on which the

reaction a6ts, and this point moves along a tangent to the

surface or curve, i.e. at right angles to the normal along

which the reaction acts.

Prop. If a body resting in contact with any surface,

not necessarily smooth, receive a displacement by rolling

along the surface, dhe work done by the reaction of the

surface is ulUmately of an order higher than the first ,

Let A be the common point of the body and the
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surface : let the body be rolled so that the point originally

at A cornea to A', and B becomes the point of contact.

Then the arcs AB, A'J^ are small, and therefore the

corresponding chords; also the angle between these chords

is small, so that the base AA\ which is the displacement

of A, is of a higher ordej than AB,
t

Cor, If the body partly roll and partly slide along a
smooth surface, it is clear that the displacement is com-
pounded of the two displacements of rolling and sliding,

and is therefore of an order higher than the first, since

each of the latter is sof

We have already seen that if two bodies in contact

receive such virtual displacements that their points of

contact remain the same, the action and reaction between
the two do not appear in the equation of virtual work for

the tvw) bodies : neither will they if in addiction to these

displacements one rolls along the other, or if the bodies

be smooth, «3ne slides or partly slides and partly rolls

along the other. For either set of displacements alone

will not bring these forces into the equation, therefore a

combination will not do so.

118. As an illustration of the application of the principfe of virtual

work, we will by means of it prove the theorem of Art.^ 81, viz., that the

tensions at the ends of a weightless string stretched over a smooth

surface are equal.

Let At B be the points where the string leaves the surface, and let T,

T* be the tensions at the ends P, Q respectively.

We shall not interfere with the equilibrinm of the string if we suppose

it to lie in a groove cut in the surface, so that when pulled at one end, it

must move along the groove. Let the virtual displacement which is
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given to the string be produced by pulling the end in the direetion

AP to so that the end Q must move along QB to a point Q^ 8tt<^ that

Q(j*s=PF» As each portion of the string in contact with the surface

moves at right angles to the action of the surface on it, no work is dcme

by the actions of the surface on the string, and the algebraical sumof
the virtual work done is T . PF-~T '

. QQ', which is therefore zero; i.e.

T=T\ since PF=QQ\
^

Apply the principle of virtual work to the solution of the following *

examples :

Ex. 1. The algebraical sum of the moments about any point in their

plane of a number of coplanar forces in equilibrium is zero.

Ex. 2. Two small rings of equal weight slide on a smooth wire in

the shape of a parabola, whose axis is vertical and vertex upwards ;^they

will be in equilibrium if connected by an inextensible string which passes

over a smooth peg placed at the focus.

Ex. 3. Two equal uniform rods freely jointed at their ends rest, one

on each of two cmooth pegs which are in a horizontal line. Sfiew that

the inclination (d) of either rod to the veitical is given by the equation

«8in*^=c,

where a is the length of each rod, and c the distance between the pegs.

Ex. 4. Shew that in Ex. 27, page 92, tlie weight of each beam is

proportiona^l to the tangent of the angle, which the line joining the centre

of the sepiicircle with the corresponding point of contact of the beam

makes with the horizontal.

Ex. 5. Two equal uniform rods of the same material and thickness

have two ends connected by a smooth hinge, and their other ends are

attached to small rings* which slide on a smooth horizontal wire. Find

the position of equilibrum when a circular disc whose weight equals that

of either rod, is placed between them so that each rod touches its circum-

ference.

'Ane, Each rod makes with the vertical ^he angle {$) given by the

equation 2a'sin^ 9=roos 6, where a is the length pf a rod and r Ihe

radius of the disc.

Ex. 6. A tripod formed of three equal uniform rods, threeends being

connected by a common joint, and the other three connected, each with

the other two, by equal strings, rests with the joint uppermost on a
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0ni€k>th horizontal plane. Shew that the tension of each string is

W beihg the weight of a rod, e the length of each string, and h the

height of the joint aboye the plane^*

Rx. 7. Prove that the total work done against gravity in raising or

louring any number of bodies is equal to the work done in raising a

weight equal to the total weight through the height moved through by

the 0|ntre of gravity. •

* Ex. 8. A heavy elastic string rests in the shape of a necklace round a

smooth right circular cone whose axis is vertical : shew that its radius is

a+t^a^ktana, where X is the modulus of elasticity, 2ira the length of

the string when unstretched, w its weight per unit length, and a the

semi-vertical angle of the cone.
*

Ex. 9. Two small rings of equal weight attracting with a force vary-

ing aH the distance, slide on a smooth parabolic sloped wire, whose axis

is vertical and vertex upwards: shew that if they are in equilibrium in any

symmetrical position, they are so in every one.

Ex. 10. A frame is formed of four uniform rods, freety jointed at

their ends and forming a parallelogram ABCD* The frame is hung over

a peg at A and ^e points liy D are connected by a weightless rod. Shew

that the thrust of the rod : the weight of the frame=:RD : 2AC,

119. We shall now prove the converse of the principle

of virtual work for a single particle, i.c.

If the algebraical sum of the virtual work done by a

system of forces acting on a paHicle be zero for every

displacement whatever', the particle is in equilibrium.

For let (fig. 98) the forces be P^, P„ &c., 0 the pai*-

tide, 00' any virtual displacement, 0^^ 0^, &c. the angles

Pj, Pj, &c. make with 00', Then, sii^ce, the algebraical

sum of the virtual work done by the forces = 0,

Pj .
00' cos + Pg . GO' cos + f . . = 0,

00' (P^ cos 4 'V cos ^2 !-...) = 0,

PjCos0jH-P2Cos6^3+ ... =*0,

ie. the algebraical sum of the resolved parts of the forcelfe

in any direction is zero, and the particle is thercifoiie iu

equilibrium.



206 STATICS. I

120.* The material systems, to which the following

propositions refer, are either single rigid bodies, or systems
of rigid bodies, connected in awch a manner by means of

inextensible strings, smooth joints, &c., that the motion
of one of them determines that of all

* *

Prop. A material system cw above, under the action

of a system of external and iniernal forces, is in eiqui-

Uhrium, provided that for every indefinitely small virtual

displaxiement whatever "which does not violate the geometrical

conditions, the algebraical sum of the virtual work done by

the external forces is of an order higher than the dis-

placement

For if the system be not in equilibrium, its motion
is a definite one, which does not break the geometrical

conditions: now we can conceive a number of smooth
surfaces or inextensible strings to be so arranged, that

they do not interfere with the actual motion of the system,

but yet render it the only motion possible. If this be
done, the whole system can be fixed by fixing one of the

moving points in it, and this can be effected by applying

to it a K)rce {F) of suflBcient magnitude, in the direction

opposite to the point s motion, since that is the only

direction jn which the particle can move.

The system is now in equilibrium under the action of

the oririnal forces, the new forces of constraint and the

force F, If then any virtual displacement be given

to the system the algebraical sum of the virtual work
done by these forces is zero : let the displacement be the

one which* actually^-takes place, when F is not applied. In
this case the work done by the new forces of constraint is

zero (Art. 117) a‘ad by hypothesis the virtual work done
by the original forces alone is zero al4b. Hence the virtual

work done by F is also zero. But as the point on which
F acts is one of the moving points of the system, its dis-

placement is of the first order, so that F must be zero, i. e.

tho system is in equilibrium without F, and without the

new forces of constraint.
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121.* Prop. A material si/stem as above, tmder the

aoUon of external and internal forces, will, if held in any
position, and then let go, move at first so that the alge-

braical sum of the work done by the external forces is

positive, proved the position is not om of eqailibrium.

If the system is not in equilibrium, we can, as before,

arrimge a system of smooth surfaces, so that the actual

motion is the only one possible, and this again can be
entirely prevented by applying at one of the moving par-

ticles, A, say, of the system, a force, of sufficient magnitude
F, in a direction opposite to that of -d's motion. The
system being now in cciuilibrium we see as before, choosing

the virtual displacement that which actually takes place,

thaC thei^algebraical sum of the virtual work done by the

original forces and F is zero.

But it is obvious, since A moves in the direction op-

positer to that of the force F, the. work done by F is

initially negative; and therefore the •algebraical sum of

the virtual •work done by the original forces is initially

positive. The algebraical sum of the work actually done
by the original forces is therefore at first positive.

f

• 122. Def The equilibrium of a body is said tq be
stable, when, on moving it slightly from its position of equi-

librium, it returns to it; if it moves still further away
from this position, its equilibrium is unstable. If the body
remain in equilibrium, the ecjuilibrium is neutral.

If a ainall ring slide on a smooth circular wire placed in a vertical

plane, it will be found by experiment tliat there are two positions of

equilibrium, one, the stable one, at the lowest p^int of the wire, and

towards which it will readily retuin if moved away from it:* the other, the

unstable one, at the higlSesi pou<< «way from which it will move if

disturbed ever so slightly, and in which it is found practically almost

impossible to keep it. A uniform sphere resting on a smooth horizontal

plane is an instance of a body in neutral equilibrium; for if it be rollld

out of its position along the plane, it will neither return, nor, un^iess a

velocity be given to it, move further away.
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The positions of stable and unstable equilibrium of a
body succeed one another alternately, i.e. ^ere cannot be
two {positions of stable equilibmm without one of unstable

equilibrium between them, and vice versA. For a position

of stable equilibrium is one to whicli the body tends to

move when placed near it, so that if there are two such
positions of a body, there must be a position between tljjem

such that, if the body be placed on one side of it, it will

tend to move towards one of the above positions, and if

placed on the other side, towards the other : i.e. there is a
position of unstable equilibrium between them. Similarly

we can shew, that there is a position of stable equilibrium

between every two .positions of unstable equilibrium.

123.* Prop. When the onli/ evternal forces acting m
the material system of the last two propositions are the

weights of the diffe^'ent particles winch compose it, and
the forces ^dtte to the geometrical constraints, such as the

reactions of smooth s)(rfaces and the tensions of inexten-

sible strings, the system is in a position of stable or unstable

equilibrium, according cls its centre of mass is at a rnaximmn
or minimum depth consistent with the geometmcal conditions

of constraint

For the woik done by gravity during any displacement

is the algebraical sum of the products of the weight of

each particle into its vertical displacement (the positive

sign being given to the displacement when it is down-
wards, the negative when upwards): and this again is

ec^ual to the product of the weight of the whole system
into the vertical displacement of its centre of mass. Also,

during any displacement of the system, consistent with
the geometrical c^i'nditions, gravity is the only force which
does work. We have seen (Art. 121), that when not in

equilibrium the system moves so that the work done by
the forces is initially positive, i.e. in this case, so that

the centre of mass moves downwards. Hence the system
always tends to move initially, so that its centre of mass
moves towards the adjacent position at a maximum depth
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and away from the adjacent position at a minimum depth;
these positions succeed one another alternately, and it is

clear tW the former are positions of stable, and the latter

of unstable'equilibrium.

•

124* The cases considered above divide themselves
into two classes : one, ki which the centre of mass of the

system is constrained to move along a certain curve^ so

that in any position, it is only free to move in two direc-

tions, opposite to one another; the other, in which the

centre of mass is constrained to move on a certain surface^

so that in any position, it is free to move in any direction

in a certain plane, the tangent plane to the surface at the
poyat. A rod with its ends compelled to move along fixed

wires is an illustration of the first class, one placed inside

a bowl is an illustration of the second class.

If there is a position of the system, such*that for all

possible small displacements from •it, the* depth of the

centre of njass is diminished, that position will be a posi-

tion of absolutely stable equilibrium
;
on the other hand, a

position, such that for all possible small displacements
^

from it, the depth of the centre of mass is increased, is one
of absolutely unstable equilibrium. A point then on the
locus of the centre of mass, where the tangent line or plane
is horizontal, corresponds to a position ot equilibrium

;
if

the tangent line or plane is below the adjacent points of

the curve or surface, the corresponding position of the
system is one of absolutely stable equilibrium, if it is

above the adjacent points, one of absolutely unstable equi-

librium.
•

If the locus of the centre of mass is^. curve, it may be
that there is a poin4 on it) <»^ch that the tangent at it is

horizontal, and cuts the curv( {here, i.e. the adjacent part

of the curve on one side is above the tangent and that on
the other side below it : in other words there may be* a
point of inflexion at which the tangent is horizontal. Such
a position of the centre of mass corresponds to a position

G. • 14
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of equilibrium of tbe system, a position from which a dis-

placement in one direction brings about a tendency to

return to it, in the other direction, a tendency to recede

still further from it.

Again, when the locus of the centre of mass is a surface,

the shape of the latter may be that of a saddle, or that of

the ground at the top of a pass between two mountains

;

in this case a tangent plane to the ground at the top of the

pass is horizontal, and has part of the surface above it and
part below it. This position of the centre of mass cor-

responds to a position of equilibrium of the system, which
is unstable for displacements of the centre of mass in the

plane containing the tangent to the path over the pass, and
stable for displacements in the plane at right angles to it.

125.* A body BAG rests on a rough fixed body DAE,
the surfaces near the point of contact A being sf^erical

:

it is required to determine whether, for displacements

made by rolling only, BAG is in stable or uqptable equi-

librium.

Let 0, 0 be the centres of the spherical surfaces : we
suppose that tbe common j^rmal oAO is vertical. G the

centre of jnass ofBAG wilfrlif^tuate in Ao.

Let BAG be displaced by rolling through a small angle

so that it comes into the position B'A'G, O' and o' being

the new positions of G and o, P the point of contact of

the two surfaces.

Let oA= r, 0A^R,AG — h, Z.AOP^a, and A'oP=l3.

The angle o'A'makeswithJlo =ZAVP+ Z PoA
•.* the fire AP = the arc A'P, JKa = rfi.

Since the weight of BAG' aicts through G*, the

equilibrium is stable or unstable, according as the vertical

Ijine through O' lies to the left or right of P, i.e. according

as the hoiizontal distance from A of

G' is < or > that of P.
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But the horizontal distance of G' from A
o%

== the hoiizontal distance of G' from A' since (Art. 117)
AA^ is of the second order, i.e.

= A'0'siu (a + )8).

The horizontal distance dfP from A—

R

sin.a,

the equilibrium is stable or unstable

according as A^G' sin (a + /8) is < or > JJ sin a,

according as A is < or >
Ba

a + /3

as a and p are small,

according as h is < or > ^

,

according as
^
A > or

If the concavity of either surface be turned the othejr

way we shall obtain the same result as before, except that

the sign of the corresponding radius will be chan^d. If

either surface be plane, its radius is of course infinity.

14--2
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Cor. The above results hold for any curved surfaces,

ifM and r represent the radiirof curvature of the sections

made by the plane of displaceihent. v

If + equilibrium is said to be criticc&,

and we must proceed to a higher degree of approximation
in order to determine whether the equilibrium is reWly

stable or umtahle.

Ex. 1. A body made up of a cone and a hemisphere having acommon
base, rests with the axis vertical on a ^ough horizontal table : determine

the greatest height of the cone in order that the equilibrium may be

stable. A ns. Height of cone= ^8 . radius of base.

Ex. 2. A prolate spheroid rests with itb. axis horizontal on a Tough

horizontal plane; shew that for rolling aisplaccmcnts in its equatorial

plane the equilibrium is neutral^ and for displacements in the vertical

plane containing the axis, it is stable.

Ex. 3. A rigtit circulai cylinder of radius r rests with its axis hori-

zontal on a fixed rough sjihore (radius JR>7’): shew that Jhe equilibrium

is stable or unstable, according as the plan in which the displacement

takes place makes with the vertical one containing the axis of the

cylinder an angle <or>cos"VW^0'

Ex. 4. A prolate hemispheroid i sts with its vertex on a rough hori-

zohtal plane, prove that the equilibrium is stable or unstable according

as the eccentricity of the generating ellipse is less or greater than

126.* The material systems for which we have proved
the preceding propositions have been either single rigid

bodies, or rigid bodies connected in such a way that the

position^ of one determines the positions of the others.

We can*however easily extend them to include the case of

a system of rigidu bodies so connected, that it is necessary

to know the positions of a number vf the bodies in order

to know those of all.

Prop. 1/ ike algebraical sum of the mrtvul work done
by the eoAernal forces be zero for all possible small virtual

displacements consistent with the geometrical conditions^

ike above material system is in equilibrium.
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For if it is not, it will have a definite motion consistent

with the geometrical conditions, and without interfering

with the actual motions of l^he bodies we can so arrange a
number of smooth surfaces or inextensible strings, that

fhese actual motions are the only ones possible: they need
not however all take place, i.e. several of the bodies may
mowe without all the ftthers doing so, and fixing one of

• them will not of necessity fix all. In this case we can re-

duce the whole system to rest by fixing one moving point

in each of the bodies, and this can be done by applying

forces P, Q, It, &c. of sufficient magnitude in the directions

opposite to the actual motions of these points respectively.

Now the whole system is in equilibrium under the action

of the original forces, the new forces introduced by the

smooth fixed surfaces &c., and the forces P, Q, R, &c.

:

therefore, if the viitual displacements chosen be the actual

ones, the algebraical sum of the virtual work done by the

original forces and P, Q, R, &c. will b^ zero, because the

virtual work dour by the reactions of the smooth surfaces

is zero. But it is obvious that the work done by each of

the forces P, Q, R, &c. is negative, since the particle

on which it acts moves in the direction opposite to that

of the force : the algebraical sum of the work done by the

original forces is theiefore positive, w^hich is iiibonsistent

with its b^ .g zero, as it is by supposition. Hence each

of the forceo P, Q, R, &c is zero, and the system is in

equilibrium; and as the smooth surfaces or inextensible

strings do not interfere with the actual motion in any way,

their removal will not upset the equilibrium of the system.
•

Cor. We see from the foregoing, that when such a .

material system as the above is not in*equilibrium in a
particular position, tfnder action of riven external

forces, it will, if placed in that position and then released,

move so that at first the algebraical sum of the work done
by the external forces is positive. By reasoning as in

Art. 123 the proposition there proved can be extended

to the case of the material systems we have just been
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considering. Amon^ the systems we can include a mass
of liquid, or a heavy inextensible flexible string.

c

It may be observed that the propositions of Arts. 120,

121 apply to all systems of bodies the internal forces

among which can do no work, so long as the geometrical

conditions are not violated : theyrwill not however apply
to those systems in which the internal forces are capable

of doing work; for instance, systems in which the pressures

of compressible fluids, the tensions of elastic strings, and
the actions of rough surfaces are included among the
internal forces. On the other hand -there is no restriction

on the nature of the external forces : they may consist of

frictions, or the tensions of elastic strings, without affeqj^ing

the validity of these propositions.

127.

* ^In a precisely similar way to that* used in Art.

121, we can prove the much more general proposition still,

that if any material system whatsoever
y under the action of

any system of forces, be placed in any positiyn and then

released, it will, if not in equilibrium, move at first so that

the v)ork done by all the forces, internal as well as external,

is positive,

128.

* Def When the forces, internal as well as €fx-

ternal, acting on a material system are such, that the

algebraical sum of the work done by them, as the con-
figuration of the system changes, depends only on .the

initial and final configurations and not on the paths the

different bodies ta^e, they are said to form a Conservative

system of forces.

Bef If any^ material system is acted on by a con-

servative system of forces, the algebi%ical sum of the work
done by these forces, as the configuration of the system
changes from any other to some standard configuration,

is termed tho Potential Energy of the system correspond-

ing to the former configuration. It is generally convenient

to take the standard configuration sudi that the potential
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enc^ for evety other configuration which is praoticallj <

considered is positive. ,

129.* Pro]». When any materi^ system is acted on
by,a conservative system of forces, it is in a position of

stable equilibrium wh^n its potential energy has a mini^

mvgn, value, and in apposition of unstable equilibrium

when its potential energy has a Tnaadmum value.

We have seen (Art. 127)> that when the system is

placed in any position, except one of equilibrium, and then
released, it will mave so that the algebraical sum of the

work done by the forces is initially positive^ i.e. it will

move so as to diminish its potential energy. Hence it

wilhmove towards a position of minimum, and away from
one of maximum potential energy. The positions of

mcmmvm potential energy then are positions of unstable

equilibrium and those of minimum potenbialT energy of

stable equilibrium. •
*

The pit)position proved in Art. 123 is a particular

case of this theorem.

130. . Recapitulation, We began by shewing that if a
particle be in equilibrium, the total virtual work done by
the forces acting on it, during any virtual displacement

whatever, is zero. The same theorem is therefore true for

any system of particles, when the internal as well as the

external forces are taken into consideration
; but if the

virtual displacement is a small quantity of the first order,

and the system of particles form a rig^d body, and also in

certain other cases, it was shewn that the total virtual

work done by the external forces ahne g a small quantity

of the second order. ^

The converse theorem was then shewr^ to hold for

single rigid bodies, and also for a system of rigid bodies,

connected in certain ways. Also such a system will,*if

placed in any position, and then released, move w> that

the total virtual work done by the external forces during
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' the initial small displacement is positive, unless the |)Osi-

tion is one of equilibrium. Bence followed the principle,

that such a material system/when gravity i.s the only

active force, is in stable or unstable equilibrium, according

as its centre of mass is at a maximum or minimum deptn
consistent with the geometrical conditions. Similarly

followed the more general thoorerfl, that for any matesial

system under the action of any conservative system of

forces, stable positions are positions of minimum, and un-

stable positions of maximum, potential energy.

ILLUSTBATIVE EXAMPLES.

Ex. 1. Find the amount of work done in stretching an elastic string.

Let a be the natural length of the string, X its modulus of elasticity;

let X be the exLension of the string.

Let the extension x be divided into n, an indefinitely large number,

TX
equal parts. When the length of the string is a \— , Ifiie tension is

n

T X '
7*+

1

X . - . - , and therefore the work done in stretdiing it to a+ — x lies
n a ^

II

^ r X X , - r+ 1
X . - . - . - , and X

.

nan n
between

i.e. the total work done in stretching the string to the length x

Jt 1 + 2 +3+ (n-l)^Xig

Hence the work done in increasing the extension fiom y to ie is

Ex. 2. Shew that the power necessary to move a cylinder of radius r

and weight W up a plane inclined at angle a to the horizon by a crowbar

of length { inclined at an angle p to the horizoh is

‘ Bing

I 1 + cos (g +^)

Let 0 be the point where the axis of the pylinder intersects the verti-

cal plane containing the crowbar AB ; C the point where the same plane

meets the generating line in contact with the inclined ifiane. Let P be
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the force, which applied at B at right angles to AB will maintain «

equilibrium. ^

Let *the virtual displacement be for AB to turn through a small angle

so that its inclination to the horizon becomes j9+^.

Art. 117, the actions between the cylinder and crowbar and between

each and the plane do not enter into the equation of virtual work.

The vertical height of 0 above A is AC sin a+ OC cos a, i.e.

=r {sin a tan i (a +/9) +cos a} =r cos J (a - /3)/co8 J fa+/9).
• •

neglecting the weight of the crowbar, the Equation of virtual work is

-0 0-/J'

P7/J nv 1
^ )_

l o+jBr
. e
sm jr

sm a 2

1
•

0.+ 8
cos

2
^ cos

a+jS+d ’ e

2

Wr sin a

a+ /S

cos sin

" r ’

2 cos*
2s

o+/9+ d
’

cos—

—

"T
2

_Wr sin a

I ’ l+00o(a f/3)’

since 0^ and higher powers are^gi ited.

Ex. 8. A straight uniform rod has smooth small rings attached to its

extremities, one of which slides on a fixed vertical straifidit wire, and the

other on a fixed wire in the shape of a parabola whose latus rectpm eqnais

tw^ce the length of the rod, and whose axis coincides with the straight

wiie; prove that in tlie position of equilibrium (stable when the vertex is
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upwards) the rod will be iuoHned at an angle of to the vertical. Whieb
is the position of stable equilibrium when the vertex is downwards?

Let PQ be the rod, P being the p(^nt on the parabolq. Let $ be its

inclination to the vertical,.2a its length, and G its middle point.

Draw PN perpendicular to the axis AN,
*

A

{1) When the axis is upwards, the depth of G below A

—AN+PG cos 0

4a
+ acosd=

4a
+ acos^

= a (1 -f- cos 0 - cos® 0).

The positions of equilibrium are given by themaximum and minimum
values of this expression,

1+ cos d - cos® - (J
- cos ^)®,

i.e. is a maximum when cos J or when d=60®.

It is clearly a minin»am when 0=0.

Hence 0=60® corresponds to a position of stable equilibrium, and
0s=O to one of unstabK^ equilibrium.

(2) When the vertex is downwards 0=0 dorresponds to the position

of stable, and 0r=6O® to the position of unstable equilibrium.

,
Ex. 4. Two smooth rods which intersect at an angle 2a are placed so

that they are equally inclmed to the vertioal/and the hne bisecting the

an^ between them is inclined at an angle p to the vertical. Prove tL at

a ball of radius a will be in a position of unstable equilibziun,
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it the distance of its points of contact with the rods fcomr the Interaeetioa •

of the rods be
^

a cohooos p
V (1 “ ® P)

*

* Let 0 be the centre of the sphere, O' of the circle m which it is inter-

sected by the plane of the rods Let li, C be the points where the rods

AB^ AC touch the sphere d^he angle CO or BO' subtends at 0

Then 00 = a cob d, CO '= a sin d, ^O =a sin d cosec a

The vertical height (/i) of 0 above A

— AO' cos jS + 00 sin /3,

=

a

(sm d cosec acos p + cos d sin

Let cos ^ cosec a= r cos and sm t bn

then (cos 0 sm d + cos d sin <f>)=ar sm (d + 0)

Now the sphere is m a position of unstable equilibrium when h is

a maximum, i e when d+

0

= Jt, i e when d = cjt~^ (sin a tan ]8)

But = O'B cot o=a cot tt Sind,

JR— acot g ocoiefcos/d
~ i7(l +am-* a t^ ' “*

^(1 - cos-' a sm-* /3)

'

£x 5 A trestle composed of lour jointed bars whidh form a crossed

parallelogram ABCD, the alternate bars being equal, is placed ii| a

vertical position, and is stiffened by a cord connecting the loW^ comers

B and 2>, which rest on a firictibnloss honrontal plane. A platform is

supported on AC, and is loaded in any manner, ^ew that the stress in
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r the ftftTtTip^.ing oord is independent of the dUtribution of this load W, and

is equal to TK /
(tan a+ tan /3), where a^and p are the inclinations of AB

and AD to BD, e

Draw AH perpendicular to DB: let AH=h, AB=a, and AD^hi let

T be the tension of cord DB.
*

/. sina= 6 sin ft

DB=HB+HD=a cos tt + 6 cos ft

Let such a viitual displacement be given to the system that the joints

9.t Af B, C, D are unbroken, while the height AH is diminished by a

small quantity x, and the length DB is increased by y. Let in con-

sequence a become a - a', and ft jS - ft.

Then h^x^a sin (a - a')= & sin {p
-

ft),

and DB+'^=a cos (a-a')+2> cos (j8-ft),

xi=a {sin a - sin (a - a')} = 2a cos (a - Ja') sin Ja'

=aaf cos ultimately.

Similarly x^hp^ cos ft

y s-a {cos (a- of) - cos aj + b {cos (j8 -ft) - cos p]

' =2a sin Ja' sin (a - ia') + 2b sin ift sin (|3 - ift),

=:aa' sin a+bft sin ft
ultimately

(tan a+ tan
ft).
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Since none of the connections are broken except the cord Z)B, the

only forces which do work are the weight W which, however distri*

bated, descends through a distance x, and the tension T, which does

negative work! (It is assumed that the bars themselves, are without

freight.)

Hence the equation of virtual work is

*Wx-Ty=0,

T= Trx///= W7(tan o+tan p).

Ex. 6. Four uniform thin heavy rods are freely jointed together at

their extremities so as to form a parallelogram, and two opposite

angular points of the frame so formed are connected by a light in-

extensible string; the system is suspended by another string attached to

one fit the same angular points : compare the tensions of the strings.

Let A be the point from which the frame is susjiended, Ji the

diagonally opposite point to which the string is attached.

" Tl|e centre of mass, v7, is the middle point of AB, which is therefore

vertic^. Let the viitual displacement be bueh that B is moved vertically

downwards tl^rough a small distance x without any separation of the rods

at the joints.

By Art. 117, the only forces which occur in the equation of virtual

work are T, the tension of the string AB, and W the weight of the four

rods.
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The equation is Tx^W,ixssQ\

3?«iTr.

i.e. the tension of the string AB is half that of the one whidi supports the

whole framework.
^

The same reasoning will enable us to prove that the same relation

holds when the framework of rods forms th^ edges of a pa]:allelepiped, or

any figure, such that the centre of mass is idways the middle point of'che

diagonal along which the string lies.

Ex. 7. Three equal particles, each of weight 7^, are fastened to an

endless elastic string without weight, so as to be at equal distahees from

each other. The whole is then laid on a smooth sphere so that the string

lies unstretched along a horizontal small circle of the sphere whose radius

is { that of the sphere. Provd that the particles will be in equilibrium

when the lines joining them subtend angles of 60^ at the centre, the

modulus of elaslicity of the string being f 77^

Let 0 be the centre of the sphere; A^ B, C the positions of the

particles when in< cquilibriqm. Let H be the point where the vertical

through 0 meets the plane ABC^ which is from symmetry horizontal.

Let r=:radius of the sphere. Let ^ be the angle which BC, or CA
subtends at O, and 6 the angle which OJ, OB, or OC makes with OIL •

Z AHB-^ L AHC=: L BIIC=iTr,

. IIA=:rBiD.$,

Frg.ioa
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/. AB»2r Bin ^ sin ,rsin$;

/. 2 8mi^^^SBin^ (1).

The original length of the strid|; was frr ; when stretched it is 8r^.

^
Tt the tension, therefore

mv
firr ‘2^2* ir"

“

'

,
£et the virtual displacement be such that all three particles descend

through equal small distances, the consequent small increments in $ and ^
being x and y. The equation of virtual work is then

3irr{oosd“Cos{d+ar)}- 3Trp=0,

2irsin(^+Jjr)6inJj?
T

'• vx sin 0= |i^2 (40 - v) y (2).

From (1) 2 sin i (0 +y) =/s/3 sin (^+ j:) (3)

;

subtracting (1) from (3) we have ^

* 2 cos (j0+ ly) sin cos (Q + ^o;) sin f

^
/. 2/C08 .)0=:XA/dcosd . . (1);

eliminating the ratio x : y between (2) and (4),

I a/C (40 - tt) cos dpw sin dcos i0,

substituting from (1)

i i^6 (40 - ir) (3 - 4 sin* J0)^=2jr cos i0 sin J0= ir sin 0.

This equation is satisfied by putting 0=iir, and substituting in (1) we

get a consistent value for 0 \ this value of 0 therefore corresponds to a

position of equilibrium.

Ez. 8. A small^riug sliding on a smooth elliptic wire, whose axis is

vertical is connected by elastic strings with eaofi focus, the modulus of

elasticity is half the weight of the ring, and either string is just

unstreti^ed when the ring is as near as possible^to the corresponding

focus. Shew that in thcf unsynui.^ *lical posiiion of equilibrium the

distance of the ring from the upper locus is equal to th^distance of the

centre from either directrix. Determine the natdre of the equilibrium in

the different positions. •

Let P be any position of the ring, A' the upper focus and vertex,

A the lower ; let dfPar. Let IT be the weight of the ring.
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Let the system have its standard configuration (Art. 128) when the

ring is at .4. In that case the potential ener^ of the system when the

ring is at P is the total work done b/^the forces as the ring moves from

FtoA.

A

Draw PN perpendicular to the directrix JVX The potential energy

of the system, when the ring is at*P, is (Ex. 1, page 216),

W J>'A^-S'P»
2 • 2S'A

“

JSP-tt(l-e)
.

5i^+-9'P2-a2(l-(?)2-rt2 (! + «)«)

“
I €

’ 4a(l-<?)
I

_-tir \r-a(l-^e)
.

r2-2ar+a2 (1-e*))

c 2a(l-e)
J

- w ~ r - a* (1 - <>) (2 - 3g - e^)

2ae (1 - e)

!er-(2e.-l)a}2-a*(l-~2c-e2^2c^+«{*)

2a€*(l-€)

The minimum value of this expression corresponds to er={2e- 1) a,

i.e. S'P^a/e^CX; the maximum yalucs correspond to the greatest and

least values of 8P, i.e. occur when P coincides with A and A\

Hence the stable position of the ring iswhere its distancefrom 8*s:'CX,

and the unstable positions are A and A\ This supposes that there is a
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point P on the ellipse such that S*P=^ale, which will not be the ease unless

<* be less than a certain quantity. If there is no such point, it is easily

seen that A' is the position of uns^ble and A of stable equilibrium.

EXAMPLES.
•

• 1. A heavy be^ AH is movable freely about the end A which is

fixed; an elastic string is attached to A, passes through a fixed ring C
vertically above A and is fastened to B: AC is equal to AB, Find the

position of equilibrium. If the natural length of the string be AC,
discuss the problem in the case when its modulus of elasticity is >, =

,

or < half the weight of the beam. * *

*
2. A rhombus is composed of four equal rods jointed at their

extremities. Two opposite corners are connected by an elastic string

whose natural length is a^2, a being the length of eaoh^rod, and the

systeimstands in a vertical plane with one of the corne^^s on a horizontal

-table. Find the angle between the rods.

•
8. A solid homogeneous hemisphere of radius a and weight W rests

in apparently neutral equilibrium on the top of a fixed sphere of radius h ,

.

Prove that 5a A weight P is now fastened to a point in the rim of

the hemisphere. Prove that if 55P=1HTV, the hemisphere can still rest

in apparently neutral equilibrium in contact with the highesf point of the

sphere.

4. Two heavy rings slide on a fixed smooth parabolic wire whose axis

is horizontal, and the rings are connected by a string which passes over

a smooth peg at the focus. Prove that in the position of equilibrium the

depths of the rings below the axis of the para'^ola are proportional to

their weights. Is the equilibrium stable or unstable?

5. A prolate spheroid rests upon another equal and similar fixed

spheroid, the point of contSct being o i she equatorial plane of each, their

major axes being horizontal and at right angles to each other. Prove

that the equilibrium will be stable for a displacement in a plane through

either axis, if the upper spheroid be loaded at its lowest point with a weigfit

bearing to its own weight a ratio greater than the duplicate ratio of its

l^ast and greatest diameters*
’

G. .
15
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6. A nniform rod AB of length 2a is freely ihovable about A : a

smooth ring of wei^tP slides on the rod and has attached to it a fine string

which passes over a pulley at a heigli^ h vertically above A and supports

a weight Q hanging freely; find the position of equilibrium of the

system. . • ,

7. A cylinder rests in equilibrium with the centre of its base on the

highest point of a fixed and perfectly rodgh sphere. The altitude, and

diameter of the base of the cylinder are each equal in length to a •

quadrant of a great circle of the sphere. Find the greatest angle through

which the cylinder may be made to rqck without falling ofi

8. A wire in the form of an ellipse, whose semi-axes are a and b, is

placed with its minor axis, vertical. A light string of length a on which

slides a ring of weight W had one end fastened to the centre, and the

other to a ring of weight W\ which slides on the wire. Shew that, if

there is no friction, there will be equilibrium if W' is anywhere on the

upper half of the ellipse, and 6/a= WI{W+2W').

9. Two particles are connected by a fine inextensible string and can

move freely in a' smooth cycloidal tube whose vertex is upwards, the-

string passing over the vertex. Provo that in equilibrium ^the arcual dis-

tances of the particles from the vertex must be inversely as their masses.

10. Five equal rods each of length a are hanged together and placed

on a smooth horizontal table, one of the angular points being joined to

the two opposite angles by two equal strings of lengtji 2e: a horizontal

force P acts at the middle point of eadi rod in an outward direction per-

pendicular to its length. Find the tensions of the strings : and shew that

the action at each of the joints where there is no string is parallel to t^he

nearest string and is equal to

11. A parallelogranc composed* of jointed rods, each, of length a and

weight P, is hung up by one angle, and inside it is placed a circular disc

of radius b and weight W. Prove that there will be equilibrium, when S

the inclination of the rods to the vertical is giyen by the. equation

f
2a (W+2P) sin® Wb cos 0,

12. A lamina in the form of a rhombus made up of two eqqjlateral

tnangles rests with its plane vertical between two smooth pegs in the

«^ame liorizontal plane at a distance apart equal to a quarter of ^he longer

diagonal: prove that either a side or a diagonal of the rhombus must be
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vertical, and tbat the stable position is that in which a diagonal is

vertical.
^

•13. A parallelogram ABCD formed of four uniform rods freely

jointed at the comers has the 'side AB fixed horizontally, and the frame

hlrUgs in a vertical plane with the joint A attached by a light string of

length I to the, opposite Joint C: AC is the shorter diagonal and a the

*aoat^ angle of the parallelografh: shew that the tension of the string ia

cot a, where a ia the length of the fixed side and W the weight of the

four rods.

14. A surface rests in contact with a perfectly rough fixed surface,

the common normal at the point of contact making an angle a with the

vertical: prove that the equilibrium is stable or unstable, according as

the distance of the centre of mass from the point of contact is less or

greater than

cos a

I/P+ I/P'*

where fs p' are the radii of the surfaces, supposed sphesical at the point

of contact.

15. A heafy body in the shape of a paraboloid of revolution placed

on a rough horizontal plane, has its 0. G. at the critical height: determine

this height, and find the real nature of the equilibrium.

16. A thin straight rod is suspended by a fine inextensible string

fastened to it at the two ends and passing over a fixed smooth peg. If

the centre of gravity of the rod is not at its middle point, determine

whether the equilibrium is stable or not.

17. A uniform rod of length c rests with one end on a smooth

elliptic arc whose major axis is horizontal and with the other on a

smooth vertical plane at a distance h from the cen re of the ellipse: prove

that, if 6 be the angle which the rod makes with tlie horizon and 2<i, 25,

the axes of the ellipse, 25 tan tan 0, where a coj 5=c cos d,

• f *

18. Two elastic 8tring| are fai>' » ed at a fixed point P and pass

through fixed Bng)oth rings A and h mch that PA, PB are the natural

lengths bf the respective strings; the other ends of ttie strings are

fastened to C and JD, two points of a rigid lamina which is movable in

its plane about a fixed point 0. If A and B are in the same plane as

the lamina and if the angles' GOA, DOB are supplementary and the

system is in equilibrium, prove that the equilibrium will be neutral.

15—2
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19. Twelve equal uniform rods form a ctbe having universal joints

at each of its angles; shew that, if if be suspended by one of its angles,

and be prevented from collapsing by'three rods without weight forming

the diagonals not passing through the point of suspension, the thrusts

along the three rods will be half the weight of the framework. *

20. Two equal rods rigidly fastened alright angles to each other are

placed over an ellipse whose plane is vertical and major axis horizoi^tal

;

find the least length of the rods that the equilibrium may be stable.
'

*
21. A smooth fixed sphere supports a zone of very small equal

smooth spheiical particles and the whole is prevented from slipping off

the sphere by an elastic ring occupying a horizontal circle of angular '

radius a, shew that in the position of equilibrium the tension of the band

is T, where 2irT=Trtana, and JF is the whole weight of the ring and
particles together.

•

22. A uniform elliptic hoop is weighted at an extremity of its major

axis by a weight equal to that of itself : shew that if it be placed on a

smooth hoiizontal plane with its plane vertical, it will have two or four

positions of equilibrium according as its cccentiicity is less or greater

than iy/2» What is 'the nature of the equilibrium *In the several

positions ?

23. Two similar uniform straight rods of lengths 2fr, 2b rigidly

united at their ends at an angle a rest over two smooth pegs in the same
horizontal plane

:
prove that the angle which the rod 2a makes with the .

vertical is given by the equation

c (a+ h) sin (2^ - a)= a- bin a sin d sin a sin (a- B),

c being the distance between the pegs.

24. Three equal and in every way similar uniform rods AU, i?C7, CD
freely jointed at B and C, have small smooth weightless rings attached to

them at A and I) : the rings slide on a smooth parabolic wire whose axis

is vertical and vertex upwards, and Nvhose latus rectum is half the length

of the three rods: ^rove that in the position of equilibrium, the in-

clination {$) of AB or CD to the vertical is gifven by the equation

‘ cos sin d + sin 20=0

Ts the equilibrium stable or unstable ? ,

26. A number of uniform thin rods, all equal and similar, are freely

jointed together at their middle points, so that they form the generators

of a right circular cone, symmetrically placed about the axis. Within
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the cone thus formed is placed a smooth sphere, and round the rods a
smooth thin ring of the same weight and radius as tlie sphere. The
whole is placed on a smooth hor^ntal plane, so that the ring is bdow
and the sphere above the vertex of the cone

;
prove that the semi-vertical

^ngle ($) of the cone in one position of equilibrium is given by

(P+ IV) a (2 sin 6+ sin 20)= Pr,

where W is the weight of liie rods, P that of the sphere and ring

^ together, 2a the length of each rod, and r the radius of the ring or sphere.

Determine the stress on any rod at the joint.

26. A, Cf D are four fixed points in the same horizontal
,
plane, at

the comers of a square whose semi-diagonal is b, A\ B\ C\ D' are the

corresponding corners of a square plate of weight ir and semi-diagonal a.

Four equal cords join AA't BB', CC\ DI)*, When the plate is* hanging

by th^ cords the distance between A'B'C'D* and ABCD is k. Shew that

if a coilple L about a vertical axis be applied to the plate so that it is.

turned through an angle 6, then

L= Wah sin 0
/ sin^ iO), ,

27. Two equal equilateral triangular laminnp each of weight W and
freely jointed together at their vertices, are placed with their bases

on a smooth horizontal table, and have their base angular points

connected by two inextensible strings, one of which is equal in length (2a)

to a side of either triangle. Shew that the tension of the other string (2b)

' is equal to

28. Two small rings, each of weight P, slide on a smooth circular wire

(radius /•) in a vertical plane, and are connected by a string of length 2a*

(< 2r) on which slides aring of weight Q, Shew that when the string is

vertical, the corresponding positioi^ is one of unstable equilibrium, and

that the stable position of equilibrium is when is at a distance from

the centre of the wire *

• =:^/[(^-^»2)P/(P+<?)).

29. A pyramidal plug is made (• lU symmetrically into an equilateral

triangular hole^whose sidS is a and plane horizontal. Prove that, to

retain it in the hole with its axis vertical so that its section by the plane

of the hole is an equilateral triangle whose side is c, a couple must be

applied of moment ^ weight of the plug and

h is the depth of the vertex in this position.



CHAPTER VIL

MACHINES.

131. It is frequently desirable that we should be able

to counteract one force by another, differing from ^t in

magnitude, point of application, or direction, or in all three.

To enable us to do this we employ machines mojre or less

complicated.

In Statics we suppose the machine to be in equilibrium

under the action of the forces due to the geometrical

conditions of constraint, the force at our disposal generally

called the P(yivet\ aiid the force which we wish to coun-
teract, generally called the Resistance or the Weight

It is found practically that, when the power is just

on the point of overcoming the weight, other resistances

.are called into play, owing chiefly to the friction between
the different parts of the machine, and the imperfect

flexibility of ropes : all these resistances oppose the power,

so that the latter hus to be greater than would, be neces-

sary, were the machine a perfect one. J[f the weight
were on the point of overcoming the power, these resist-

ances would assitt the latter. It is usual to call the

resistance or weight, which it is the object of the machine
to enable, usi to overcome, the useful resistance, while the

other resistances are called wasteful resistances. When
w^ take these latter into consideration, we shall suppose •

that motion is just about to take place, and that the
power is overcoming the useful resistance.
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If motion just occurs, the work done by the power wijl

«

equal that done against l^th the useful resistance and
the wastefqi ones

;
the former pai^t of the work is termed

useful and the latter lost work.
•

, 132. Def When motionjust takes place in a machine,
the ratio of the useful work done to the whole work done

, inlihe same indefinitely short time is called the Efficiency

of the machine. It is of course desirable to have the

efficiency as near unity as possible.

Let P denote the power, W the useful resistance, and
W' the wasteful resistance.

If P move its point of application through a small

dist^tnee s^ and in con.aequence the work done against

.be Wy and that done again.st W* be we have from the
principle of virtual work,

• PS =!w +

•

•

the efficiency then is w/(w+ ?0-

Let P^, be the force which would just move W were
there no wasteful resistance, then P^s =w by the principle

of virtual work. Hence the efficiency = Po«/-P^ = -l^o/-P>

the efficiency is the ratio of the power, which would just

move the weight were there no wasteful resistance, to the

actual power required.

Unless otherwise stated, we shall suppose the machines
perfect ones, i.e. with efficiency equal to unity.

133. The simple machines are,—the Lever, the Wheel

and Axle, the Pulley, the Inclined P{am, the Screw and the

Wedge. The principle of the wheel ana axle is the same
as that of the lever, and the ^(‘row and w^ge are identical

in principle with theSnclined plane.

• *

134. r The Lever. This is a rigid rod, straight or

curved, and free tQ« turn about a fixed axis, which Is

called the fulcrum. The two parts into which the rod is

divided by the fulcrum are called arms.
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'
.

Levers are usually classified as follows. In the lever

of the first class, the fulcrum^is between the power and
the weight: a poker where tot) bar of the gi^te is used
as the fulcrum, and a pair of scissors are instances of it.

In the second class, the weight is between the fulcrunf

and the power, as in a wheelbarrow, where tlie point* of

the wheel in contact with the gibund is the fulcrum,, or

in an oar, where the blade in contact with the water is

the fulcrum, and the resistance is applied at the rowlock.

In levers of the third class, of which a pair of shears and
the human arm are examples, the power is between the

fulcrum and the weight.

135. The condition of equilibrium of a Lever, • 4^ in

Art. 74 we can shew that the necessary and sufficient

condition of equilibrium of any body whatsoever, which is

free to turn about a fixed axis, and under the action of

any number of forces,, is, that the algebraical sum of the

moments of the forces about the fixed axis be zero.^ In
the case of the simplest form of the lever th^ forces are

generally only two, the power and the weight, acting in

one plane, so that the condition of equilibrium becomes
that the moment of P about the fulcrum should be nu-
merically equal but of opposite sign to that of W,

This condition may also be easily found by the Prin-

ciple of Virtual Work.

136. To deitermim the pressure on the fukrum when
the Lever is in equilibrium.

Since the action of the fulcrum together with the

power and the weight keeps the lever in equilibrium,

the reaction on *che fulcrum is obviously the resultant

of the power and the Weight. If, however, the lines of

action of P% and W are not in one plane, they do not

reduce to a single resultant, and the pressure on the ful-

ortim is not a single force. ^

We shall assume that the lines of action of P and W
are in one plane.
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When the power • and the weight are parallel, the •

reaction (R) of the fulcrum is parallel *to each of them;
and in a lev^r of the first class, jB =P + TT,

of tlie second class, P = TF- P,

. ,
of the third class, P = P -7 IF.

#When the lines of ^tion of the power and weight are
not parallel but meet in G, let A, B be their respective

, FIg.llO.

points of application, a, ^ the angles, wjiich their lines of
action make with AB,

It is required to find the magnitude of P, and the*

angle {0) its direction makes with AB,

Since the lever is in equilibrium under the action of
the three forces, P's line of action passes through C,

Also (Art. 18) sin AGF : sin BGF^ F : P;
.•.sin(fl-a) : sin (tt- =F : P;

•
^ cos g — cos 0 sill g ^ W ^

*

* sin ^ Bos P q- c* sin P ’

P cos a — F COS ^
Also . J?= P*+Q*+ 2PQco9AGB;

jB= V{-P’+Q*— 2P§cos(a+y8)}.
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137. To find the ration between the Power and the

Weight in a rough Lever^ when the Power is on the point

of moving the Weight ^

Let il, 5 be the points of application of the power (i^

•and the weight (T^ respectively : let their lines of action

meet in C at an angle 6, The fulcrum is a rough solid

cylinder, which passes through a cylindrical hole in the

lever, just so much bigger in diameter that* there is contact

along one generating line only.

Let the plane ABC^ which we assume to be perpen-

dicular to the axis of either cylinder, cut the hole in the

circle DEQ of radius r and centre -F, D being the point

where the line of contact meets the circle. Join JD(7, then

the reaction of the fulcrum (R) acts along CD. Also, since

the. lever is on the point of turning rotindF in the direction

in which P tends to turn it, the reaction R will make with

the normal FD an angle equal to the a^le of friction,

and on the side \\rhich enables it to assist W, .

Let Pf q be the perpendiculars from F on the lines of

action of P, W respectively.

Since R counteracts P and W,

P* =P*+TP+ 2PF’cos^.
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Also, by taking moments about F, we have

Pp=i lFq + Rr sin^

= Wq-\-r sin X.V(-P*+ TP + 2PF'cos^...(l).

,
If P and W are in the same direction this becomes

» P(p— r sih X)= Tr(}+»’ sin X).

IfP cou^d only just balance W, or, in other words, wci-o

W on the point of moving P, the relation would be

Pp = TTij’ — r sin X . V(-P*+ + 2P IT cos ^).

J38. To find ihe efivoiency {E) of the rough Lever.

£et P, be the power just required to move W, when
•the fulcrum is perfectly smooth.

Then

But tl gb efficiency/

PoP= Wq.

P~Fp
Therefore from (1) we have

pq{l — E) = r sin X . V(?* +p*E* + ipqEcos 0),

which gives us P. •
.

IfP and IF are in the same direction E becomes

. 5 (p — r sin X)/{p (gf+ r sinX)}.

139. The Wheel and Asde. This ntachino consists of

a cylinder a (the whtSsl) witi ‘a groove cut round the dr-

cumferenc;ie, and a cylinder b of smaller radius (the axle).

The two form one rigid body and have a common hori-

zontal axis oc', at the ends of which are two pivots c ahd
o', resting in fixed sockets so that the whole can turn

about this axis.
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ithe power P is applied tangentially at the circum-
ference of the wheel, generally by means of a rope, while

the weight is suspended by a rope which is wound round
the axle so that it tends to turn the machine in the op-

posite direction to the power.

The apparatus for drawing a bucket of water out of a well is frequently

a machine of this kind, the power being applied by means of a handle

attached to the wheel instead of by a rope. A windlass for hauling up an

anchor on board ship is a modification of the wheel and axle, in which

the common axis is vertical, and.the power is applied at the ends of poles

wHioh project from the wheel so as to form radii produced.

Condition of EqtiilihHum. The Wheel and Axle, as

before stated, is a kind of lever, and we can shew as in

Art. 74 that the condition of equilibrium is that the

moment of P about the axis should be equal and opposite

to the moment of TT, i.e, that

Px the radius of the wheel = IT x radius of the axle.
e

If the ropes }>e of considerable thickness, the tension of each may be

supposed to act along its axis or central line, so that the condition of

equilibrium becomes

r X (rad. of wheel+ 1 thickness of P's rope)

sW (rad. of axle+ ^ thickness of TTs rope).
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Rigidity 6f Ropes. We have hitherto supposed, that the ropes are

perfectly ^xible^ i.e. that they offer no resistance to being beni As a
'

matter of fact when a rope is wou^ oti to a drum, pulley or axle, it does

offer a resistance, though none is offered when it is woiind off. From
^periments made on new diy ropes and tarred ones Coulomb has deduced

the^following empirical results.

If a rope whose tension i% r, is on the point of being wound on to a

^
drum, the effect of the rigidity of the rope is the saine as would be pro-

duced by increasing T by a certain* amount T. This amount T is most

simply expressed by the formula

,_a+bT
7

where a pnd b are constants depending on the rope, and R* is the effec-

tive Radius of the drum, i.e. its actual radius + half the thickness of the

rope.
*

What is the precise meaning of the above statement?

T^e force T exerted by the rope cannot be greater tlfkn itself; how
can the rigidity of the rope increase the effect of T?* As it cannot alter

the lAagniti ^e and direction of it deafly can only increase T*s effect by

causing it to act at a greater distance from the drum than would be the

case, if the flexibility were perfect. This is precisely what we should be

led to expect from k priori considerations. Where the rope is being

wotimloUf those fibres furthest from the drum will be stretched more than

those nearer, and will therefore exert the greatest tensions—hence the

resultant tension will act.furtherfrom the drum than the central axis of

' the rope. .At the point where the rope is being wound off, there seems no

reason why ono fibre should exert a greater tension than another so that

the resultant tension will act along the central axis.

Where must T act in order to have as great a moment about the axis

of the axle or drum, as r+ acting along the central axis of the

rope? If the distance of the lino of application oiT from the central axis

be X, we must have ^

T(n'+x)=(T+
^^^^-Y',

X clearly cannot be greater thf^n ^ the thickfiesaof the rope.
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^
By using the method of Art. 137» the following results may be ob-

tained.

If the Power P applied to a wheel 'aud axle of.weight ^>, by means of

a rope of thickness be about to raise a weight W which is suspended

by a rope of thickness tsi the relation between P and W is ^

P (P+ Jti - p sin X)= Tl'' (r+ Jtj+P X) + wp sin X,

where B is the radius of the wheel, r that ot the axle, p that of the piPDts

about which the whole turns and X the angle of friction between the pivots

and their bearings.

If the rigidity of the rope to which W is attached be taken into

account, the relation becomes

- /> t'iu ^ x (^*+ i^ sin X) + icp sin X,

•where a and h are the constants mentioned above. '

In both these cases, P is applied vertically downwards.

Ex. 1. Four sailors, each exerting a force of 112 lbs.
^
can just raise

an anchor by Ineans of a capstan whose radius is 1 ft. 2 in. and whose

spokes are 8 ft. long (measured from the axis). *Find the weight of the

anchor. • * IJf^ons.

Ex. 2. If the length of each of a pair of sculls be 8 ft. 6 in., and the

distance from the hand to the rowlock be 2'ft. 3 in., find the resultant

force on the boat when the sculler pulls each scull with a force of 2^ lbs.,

assuming that the blade does not move through the water. Am, 18 lbs.

Ex. 3. A fly-wheel 10 ft. in radius weighs 15 tons, its axle is 6 in.

in radius and revolves in bearings between which and it the coefficient of *

friction is *2 : find the smallest weight which, hung from a band round

the circumference of the wheel, will just turn it. Aiia, 333 lbs. nearly.

Ex. 4. Find the efficiency of a * wheel and axle,’ which weighs 50 lbs.

and turns on pivots of } in. radius, and ^coefficient of friction *1, when
the Power acts vertically downwards, the radii of the wheel and axle are

2 ft. 8 in. and 5 in. respectively, and the weight to be raised is 5001b*s.

j
Am, *987.

Ex. 5. Find the efficiency of the machine described in Ex. 4, every-

thing remaining tiie same, except that the thickness of the ropes andftheir

rigidity are to be taken into account ; the ropes are *8 in. thick, and the

constants a, ‘b (Art. 139), are 8*6 and *18 respectively, provided that, in

using the empirical formula of Art. 139, P' is expressed in inches, and T
in lbs. * • Am, *962.
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140. The PvUey. ^ pulley-block consists of two
plates or sheaves connected by an axle about which a
circular disc, with ^ groovoTcut in its circumference, can
turn. Bigialy oonnected with the axle is a hook to which
» rope can be attached so as to support the pulley, or by
means of which the pulley can suppoH a weight. Soine-

tinjps there are several* discs, either turning about the

•same axle or placed one below another
;
they then form

double, treble, &c. blocks. A rope passes along the groove

in the circumference of the disc, and, as the latter is

supposed smooth,* the tension of the rope will be the

same on both sides the pulley.

AYhen the block is fixed, the pulley is said to be fioaed;

otherwise it is called a movable pulley.

If a fiooed pul^y be used to enable us tg overcome
resistahpe, the only object gained by the usaof the pulley

is that the force applied Is enabled to counteract a force

in a different direction, though not of greater magnitude.

• lA

When a single movable pulley is used, the weight* W
is attached to the block, and the power P is applied at

one end of a rope which passes under the disc of the
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^
pulley, the other end of the rope,being fastened to a fixed

point.

It is obvious, when the strings * are parallel, that

W= 2P, and when they are not parallel, but each mak^s
an angle 0 with the vertical, that W—iP cos 6,

I

141. There are three systems of pulleys usually He-,

scribed in text-books.

In the First System, the weight is attached to the lowest

pulley, which is supported by a rope, one end of which is

attached to a fixed beam, and the other end to the next

pulley above, which is in turn supported in a similar way:
the power is applied at the end of the rope supporting

the highest pulley. The portions bf the ropes not in

contact with Ithe pulleys are vertical.

" OmditionofEauilibriuin. Let there be w pulleys, whose
weights in oraer from the lowest are and let

the tensions of the ropes supporting them be
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Then from the equilibrium of the different pulleys, we have <

22\w W+ w, (1),

2r/=2;+w, (2),

= + (3),

22’„ = 2’^. + w. (n),

also ^ = 0^+3).

Multiplying equations (2), (3)...(/i + l) by 2, 2*, 3®, ...2**

respectively, and adding, we have

2"
. P + 2w^ + 2*^3 + . .

.2**"^

If the pulleys be without weiglit, this equation reduces

to 2*.P= W.

We can deduce the same equation hy the principle of
virtutil .work, •

Aet thj virtual displacement be the one which would
actually bo produced by moving the end of the rope to

which P is applied through a small distance x in P's
direction. By this, the uppermost pulley would be raised

through a height the next lower pulley through a

height ^ , and so on, the lowest pulley and weight being

raised through a height ^

.

During this displacement, the actions of the fixed

points to which the ends of the different ropes are at-

tached do no work, nor is i*h ^,done by the internal forces

of the system (Art. Tl^), ^’he equation of virtual work
then is

•

i.e. 2"P = IT+ Wj + 2^3 -f 2*^3 + .

.

16G.
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c 142. In the Second System there are two pulley-

blocks, the upper of which is, fixed, and the lower mov-
able: a rope passes over one«of the discs of the upper
block and under one of the lower block alternately, the
radii of th^ different discs being such that the portion^

of the rope not in contact with a pulley are vertical,' or

nearly so. One end of the rope is attached to one of flie

two blocks, and at the other end 4^e power is applied.

The weight is attached to the lower block.

Condition of Equilibrium, Let W be the weight to be
inoludiog that of the lower block : let 'F be the
which just raises it : then the tension of the rope is



MACHINES. 243

P throughout, and if there he n stripgs coming from thd
lower block, the total forc^ exerted by them is wP, and we
must have,W= nP. ^

^ 143. In the Third System, the uppermost pulley is

fixed : each pulley has a rope passing over it, with one
egd attached to the height ana the other to the pulley

next below. The power is applied at the end of the string

passing over the lowest pulley.

It should be observed that the third system is obtained by inverting the

first, the beam becoming the weight, and vice vemft,

Obndition of Equilibrium, In investigating the relation

between the weight W and ix 3'powerP which will support
it, we shall suppose the portions of the ropes x^ot in contact
with the pulleys to be vertical, and the ropes to be without
weight. •

Let tfiere be n pulleys, including the fixed one, and
let Wj, be the weights of the movable onOit
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beginning with the Igwest; let be the tensions

of the ropes passing over them.^

Since each pulley is in equilibrium, we have .

r, = 22\ + «;. (1),
^

2; = 2r, + «;, (2);
r

= («-!)>

from the equilibrium of the weight

3[; + 2;+r
3
+...T,= lf (n),

also r, = P.

Multiplying equations (1), by 2**"^ 2““^

2**”®...2 respectively, and adding, we have

21’^ = 2”“^ Wj + 2**“* +. . 4- 2*^.

Adding equations (1), (2)...(?i — 1), and employing
equation (/i), we have *

’ F-P = 2(Tr-PJ+t(;, + t(;,

Eliminating we have

F*P (2-- 1) + w, (2’’-^ - 1) + (2"-® - 1) +. .
(2-1).

To deduce the relation between W and P from the

principle of virtual worh

Let the weight W be supposed moved vertically down-
wards through a small distance oo. Then the highest

movable pulley, will be raised through a height

the next pulley below will be raised twice the height
through which tne highest is raised, together with the
distance through which the weight descends, i.e. through
a height 3^.*' Similarly we can see that any pulley will

rise through a height x, together with twice the distance

through which the next pulley above rises. The ,distances

therefore through which the weights are

tespectively raised are a?, (2*— 1) x, (2* - 1) x,.

.

.(2""* - 1) x.
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Also the point of application of P will be moved vertically

upwards through a uistan<;p (2* — 1) x.

Hence Ithe equation of virtual work is

^ Fa:- a: - (2* -s 1) a:- (2’ - 1) x

- - 1) W,a:- (2" - 1) Pa: == 0

;

TF= (2“ - 1)P + (2“-‘ - 1) w, + (2“-'- 1) w,

+-(2*-1)m'„-,+ w,.j.

We can take into account the friction between the axles of the pulleys

and £heir hearingsV the method of Art. 137, and also the rigidity of the

ropes by that of Art. 139.

]^. 1. If there are three movable pulleys arranged as in the first

system, their weights beginning from the lowest being 9, 3, and 1 lbs. re-

spectively, find what.power will support a weight of 69 lbs. Am, 11 lbs.

Ex. 2. If in the second system there are altogether fiine pulleys and

each*puUey weigh one pound, what force will be reljuired to support a

weigliit of 86 bs. ? Am, 10 lbs.

Ex. 3. If the weight supported in the third system be 56 lbs., and

each movable pulley, of which there are 3, weigh 1 lb., find the horizon-

tal distance of the centre of mass of the weight from the centre of the

fixed pulley, supposing the diameters of all the pulleys to be equal.

Ans. -/g the radius of any pulley.

Ex. 4. If a weight P be on the point of lifting a weight Q by means
of a rope to which P is attached, passing over a fixed pulley and under a

movable one, to the latter of which Q is attached ; find the relation

between P and Q, assuming that the pulleys are exactly similar, and

that the effects of friction, and rigidity, are small.

Am, {1 + f (2p sin 4>+b)lr}Q + ial

r

where r is the radius of

each f>ulley, p of the axle, ^ the angle of friotioij, and a and b the con*

stants determining the rigidity of ^h^ rope. 'The ropes not in contact

with the pulleys are supjAsed vertiral.)

Ex. 5. Find the weight required to lift a weight of*70 lbs. by means
of 2 movable pulleys arranged as in the first system, when each puUoy
weighs 1 lb., is of 3 in. radius, and has an axle i in. radius, the coefficient

of friction being *075, and each rope *6 in. thick, the constant of

rigidity a being 3*6 and b *125. Am. 19*8 lbs, nearly*
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c Ex. 6. Find the foxce ^hich must be applied vertioallj downwards

in order to lift a weight by means of 4^ulleyB arranged as in the second

system, each of in. radius, and tumng about an axle of *2 in. radius

(coefficient of friction *12), when the total weight of the lower block is

600 lbs., and the rope is *25 in. thick. The constant of rigidity a is 1*8^

and b, *086. Am, 172 IJbs.

r

144. The Inclined Plane. A line in the plane per-
^

pendicular to its intersection with the horizontal plane is

called a line of greatest slope^ and the vertical plane

containing this line the principal plane.

To find the condition of equilibrium on an inclined

planjSy where TF is the weight and P the power
«

(i) When the plane is smooth.

Let BAG be a section of the inclined plane made by
a principal plane, BA being the line of greatest slope and

AC being horizontal. Let a be the angle of inclination

BAG.
c

The reaction of the plane acts at right angles to

the plane and therefore parallel to the plane BAGi the

weight W a<^ts parallel to this plane also, so that the

pover P must also act parallel to this plane. Let 6 be the

angle which P’s line of action makes with AB measured

up the plane, 0 being positive when P*s direction is above

the plane.
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By Art. 18, i

P : W \ P = &in (Tf, : sin (P, P) : sin (P. W)

= sin a : costf : cos (a + ^).

,
P clearly has its least value for a given value of

when ^= 0. *

(ii) When the plane is rough, and the direction of P
is in the principal plane.

The total reaction R of the plane. will act in the

principal plane, since W and P do
;

its direction cannot

make with the normal an angle greater than the angle

of friction, but may make any smaller angle.

Let W be the angle which R makes with the normal,

7s! being measured towards the lower p^t of the plane.

Ve have then the equations

i?®=P*+^TP4--2i’ir cos + +
«p»+TP-2PTrsin(^+ a), •

, P sin (^TT —V + Jw — a) _ sin (a + V)

sin(V4-47r-^j “cos(^-V)*

to determine R and V.
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* When P is just on the point of moving W so that the
latter is just about to slip up t|[ie plane, the total reaction

will make with the normal an mgle \ on the side towardi^

the lower part of the plane : in that case

cos CV.)

Also F.
cos (2 4“ 0)

cos (^ — X)
*

The value*of which will give the least value ofP for

a given value of F is X
;

i.e. for P to be most effective it

should make with the plane an angle equal to the angle

of friction.

By changing the sign of X in the preceding investiga-

tion we can obtain the value of P which will just prevent
F from slipping domn the plane, when the reaction It

will make an angle X on the other side of the normal.
This gives us *

*

P^W
* cos (^ + X)

’

and P=F. cos (g + 0)

cos + X)
’

(iii) When the plane is rough and P’s direction does

not lie in the principal plane.

Let P make with the plane an. angle 0, and let its

resolved part along the plane make an angle ^ with the
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line of greatest slope drawn up the plane. «Let the re-*

action R of the plane be resolved into R cos V «dong the
normal, and* JZ sin along the plane, the latter making an
angle ^ with the. line of greatest slope.

^Resolving the forces at right angles to the plane, along
the line of greatest slonp, and in the plane at right angles

^
to*the line of greatest slope, we have

Psin^ + iZcosX'— TTcosass 0,

Pcosd cos<^ + -KsinX'coS)9— Trsina=*0,

Pcos ^sin^ + PsinX'sin/8 = 0.

These equations are sufficient to determine P, and
when the other quantities are known.

If P be on the point of moving W, the reaction R
makes with the normal an angle X, so that writing X for

X' i^ the above equations, they enable us t& determine

P, R and when tlie other quantities are fi:nown.

o
145. The Screiu, A screw may be supposed, con-

structed as follows :

—

Let aa'dfd be a solid right circular cylinder, and let

AA'UD be a rectangle, whose breadth AA' is equal to

the circumference of the cylinder. Draw BB\ 0(7, 1SD\

&c. parallel to AA' and at equal distances from one

another : join AR, SO\ CD'. Now let the rectangle AR
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<be wrapped ^ound the cylinder, so that the sides ABODy
A'B'CI/ coincide with the generator ad, the points A, A'
coinciding in a, B, B' in 5, (7 in c, and J>, U in d.

The lines AB\ jB(7, CD' will now form a continuous lino

going round the cylinder, called a helix. It is clear that

in wrapping the rectangle round the cylinder, we have not
altered the inclination to A*B of afiy of the lines AB\ B(fi

CD', so that the helix everywhere makes the angle BAA'
with the base of the cylinder. This angle is called the

pitch of the helix ; and it is equal to

tan"'
AB
AA'

or tan"'
distance between two consecutive coils {ah)

circumference of the cylinder

Now imagine a solid figure to be generated by a small

rectangle dhed (fig. 121) which moves so that eOne
side ad always coincides with a generating line, while a

comer a describes the helix, and its plane always* contains

the axis of the cylinder. Each point in ab will describe a
helix, the pitch of the helix being smaller the further the
point is from a : the distance between two consecutive coils

will be the same for all, but the circumference of the
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qrlinder round which any particular helix would wrap
will be greater the further the generating point is from a.

This thread is a square one: an angular thread is

generated by an isosceles triangle ahc, whose plane always
contains the axis of the cylinder, and whose base ah moves
exactly as the side ad ^ the rectangle ahcd which gene-
rates the square thread.

The solid cylinder, together with the solid figure above
described, form a solid screw, which works in a hollow

cylinder of the same diameter as the solid one, and with a
groove cut in it, which just fits the thread of the solid

screw. The hollow screw is generally fixed in a support.

The screw is generally used as follows :

—

The solid screw has at one end an arm at right angles

to the axis : the powder P is applied at the end of this arm

and perpendicular to it, so as to tend to turn the screw

round and so move it in the lir^ction of Its axis, and thus

produce pressure on tiny bod} situate at the end of the

axis: the pressure which is tlius overconae is called the

Weight (W).

146. To find the condition of equilibrium in a screw

with a square thread.



252 STATICS.

Let a be the length of the arm, at the end of which
the power P acts : h the dis^ce between two consecu-

tive threads. The surface o? the groove o£ the hollow
screw will exert pressures perpendicular to the surface of

the thread at a very large number of points. Let jR Be
the resistance at one of these points Q, which is ^ a
distance r from the axis of the setew : we have seen that

the pitch (a) of the helix, which passes through this point,*

and has as axis the axis of the screw, is tan“^ A/27rr. The
*

direction ofR is normal to the surface of the thread at Q,
and therefore to any line in that surface, passing through Q.

From the way in which the surface of the thread has been
generated, R must be at right angles to the line from Q
perpendicular to the axis of the screw

;
it must also (be at

right angles to the tangent to the helix through Q, i.e. it

makes an angle a with the axis of the screw. We may
resolve R into two components, one, R cos a, along the

axis of the sefew, and the other R sin a, perpendicular to

the axis, and at a distance r from it. Similarly all the

resistances, such as iZ, can be resolved in the same v/ay.

Resolving along the axis, we have

W= S (iZ cos a).

Taking moments about the axis,

Pa = S {Rr sin a).

But 27rr sin a = A cos a
;

'C /R^ COS
/ TJ \

f W ^ 27ra

p"ir I

_ circumference of circle traced mi by end of P's arm
• distance between two consecutive threads

We can easily deduce the same relation for a screw

with any smooth thread, square or angular, from the
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principle of virtual work, by a method similar to that used

in Art. 155.
*

Ex. A smooth screw makes three revolutions while it advances half an

iHbh, find the power which must be applied at the extremity of an arm

one foot long in order to produce a pressure of 144 lbs. Am, *32 lbs.

^
•

• 147. When the screw thread is not smooth, we can

find the condition of equilibrium, if we assume that the

breadth of tho thread, i.e. the side ab (fig. 121) of the

rectangle which is supposed to •generate it, is very small.

The pitch of the screw will be the same then at every

point of the thread : let it be oc.

Let us suppose that the power (P) is just on the point

of moving the weight TF, then the limiting friction is

called into play at every point of contact of^the thread

with •the groove, and acts in the direction iu which it can

most effectWely oppose P, i.e. directly opposite to that in

whicli the«point of the thread is about to move : it makes
then an angle Jtt — a, with the axis of the screw, and is

perpendicular to the line drawn from its point of applica-

tion at right angles to the axis. Let \ be the angle of

friction, P,, Pg... the normal reactions at the different

points of cont^t
;
r the distance of each of them from the

axis of the screw.

Resolving along the axis of the screw, we have

TT — S (P cos a) 4* 2 (P tan X sin (x) = 0,

takii^ moments about the axis.

Pa — 2 (Rr sjn a) — 2 (Pr tan X cos a) = 0

h cos a •

But r sin a = -

27r

cos(a4^«
cosX

/. W= (cos a — sin a tan X) 2 (P)
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iTTSina /

, ,, /A cos a AtanXcos*a\
and =

_ A cot a sin (^t ^ \) ^ fxy\

~'27r '"’coTX”*^^^;'

P A tan(a+\)

W ^tra * tan a

When W is on the point of overcoming P, the relation

P
__

A tan (a — \)

W ^ 27ra ‘ tan a
becomes

Since the power (P^ which would just move TT,

when the screw is smooth, is Whj^ira, the efficiency of the

rough screw is = tan a cot (a + X).

Ex. If the screw in example on page 253 be rough, coefficient of

friction *08, ahd the radius of the axle he ) in., find the power required

to raise 144 lbs. ^ Ans. *8 lbs.

• •

148. The Wedge, which is a solid prism, whose section

is an isosceles triangle, and which is used to split wood,
&c., by being driven in by blows of a hammer, is so

essentially dynamical in principle, that we shall not dis-

cuss it heris.

149. Besides being used as an instrument for multi-

plying Force, the Lever is also employed for weighing
purposes: in one form it is known as the Common
Balance.

This in its simplest form consists of a straight uniform

beam AB, from (he two ends of which scale-pans hang.

The lever turns about a fulcrum which is situated

above it in a short beam CD, which projects at right
* angles to AB, from its middle point P.

' The substance to be weighed is placed in one scale-

pan, and such weights in the other, that the beam is

horizontal when in equilibrium.
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An index needle is often attached at right angles to the beam. The
needle traverses a graduated arc and shewswhen the beam is horizontal by

*

pointmg to the zero mark. In balyices for accurate weighing the folcmm

IS formed by the edge of a triangular prism of haidene^ steel (a knife

edge),•which rests on a plate of smooth agate. Hence (^t. 137) the effect

of friction is rendered very small.
a

Fig. 123 *like the other figures of the machines, is not intended as a

realistic representation. It is assumed that the student is familiar with

the actual forms of the simple machines.

150. The following are the lequisitefe of a good
Balance.

(1) It should be true, i.e. when loaded with equal

weights, the beam should be horizontal. This requisite is

obtmned by making the scale-pans of equal weight, and the

two arms exactly similar in every respect. We can easily

test the Truth of a Balance by interchanging the weights,

which keep the beam in equilibrium, w^en horizontal
;
if

the beam settles again ini horizontal position, the

weights are equal ana the balance true, but not otherwise.

It IS esLsy to make a balance approximately true, but almost impos-

si|[)le to make it absolutely so. When therefore very great aoennioy is

required, the method of double weighing is adopted. This enables us

to determine the exact weight, however untrue the balance may be. It
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consists in first making the beam horizontal with the body whose weight
* is reqniied in one scale-pan and sand or shot in the other : then the body

is replaced by weights sufficient to kem the beam horizontal. It is clear

that the weight of the body is that of the weights. •

(2) A Balance should be sensible, i.e. when the weighfe
differ by a small quantity the deviation of the beam from
the horizontal should be easily pefceptible. •

To ascertain how this requisite is secured we must find

the position of equilibrium when the balance is loaded

with weights P and Q.

Let Q be the centre of mass of the lever, not includ-

ing the scale-pans, W its weight. Let AB = 2a, CJD = h,

CG =* k. Let 8 be the weight of each scale-pan aoting

through A, B respectively. Let 0 be the angle which
AB makes with the horizon when P is placed in the

scale-pan hanging from A and Q in the other.
«

^

'

By taking moments about G for the equilibrium of the

beam, we have t
*

(P -f- 8) (a cos ^ — /i sin 0) — (Q -f- (a cos ^ + A sin 0)

— Wk sin ^ = 0,

“ (P + g + 2/3) A + Wk

For a given value of F — Q, the sensibility will be the

greater, the greater tan 0 is, and for a given value of 0,

the sensibility is the greater, the smaller F Q is, so

that we may take,p^^
q ^ measure of the sensibility.

Hence the second requisite is best obtained by making

comparison \Vith h and k.

'in balances for very accurate weighing, C is in the line AB, so that h

is zero, and the sensibility is proportional to a/ Wk, which is independent

of the load placed in the scale-pans. Also the sensibility is increased by
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making W smaller. In order to have^ a beam as long and as light j

as possible, consistent with sufficient strength, it is ordinarily made of

not a single rod, but of a framewofk of rods.

^ (3) A good balapce should be stable, i.e, it should
readily return to its position of equilibrium, when moved
from it, i.e. its time of oscillation about its position of

eqfliilibrium should be small. It is shewn in works on
*Rigid Dynamics that the time of oscillation is small when
the arm a is small compared with h and k, so that the

conditions of sensibility and stability are at variance one
with another.

In making a balance, however, consideration is paid to the sort of

weighing it is required foi. In sciGntific measurements, where the

greatest accuracy is desired, the thud requisite is sacrificed to obtain the

second ; but for oidinaiy commcicial purposes, where it is more necessary

to save time than to be veiy accurate, the reverse is the case.

TKo stability is often measured by the Sum of the moments of the

force*!,which bnng back the beam into its position of equilibrium,

but It IS offvious that the time required to do this, and therefore

the stability, will depend on tlie mass to be moved and on its shape,

as well.

151. The Common Steelyard. This is a lever used
as a balance, in which the necessity of keeping a number

of weights is obviated. It consists of a straight beam AB,
which is free to turn about a fulcrum G, The weight to

be ascertained is placed in a scale-pan, which hangs from

the end A. A fixed movable weight slides along the

17G.
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t beam, which is graduated so that the graduation at which
the movable weight is situate, when the beam rests in

a horizontal position, gives the^required weighj;.

,
To shew how the graduations are, obtained, «

Let P be the movable weight, Q the weight of the

beam and scale-pan, G the point of the beam throu(»li

which Q acts. •

Let K be the position of the graduation n, i.e. the

position P occupies when there is a weight nP in tlie

scale-pan, and the beam balances in a horizontal position.

Taking moments about C, we have

nP .AG-q,GG-P .CK^O,

Putting >1 = 0, in this equation, we get the position 0 of

the zero ofHlie scale, G0 = --^. GG, or 0 is on the other

side of G to 6f, and at a distance p . GG from it, «

Heiic( nP,AG=^P,0K,

or 0K= nAG.

The graduations are obtained tlien by marking off dis-

tances from 0, equal to AG, 2AG, SAG, &c. By giving

?i fractional values w'e can obtain intermediate graduations.

152. The Danish Steelyard. This steelyard consists

01 a beam AB, terminating in a ball B
;
from the end A

hangs the scale-pdn in which the body to be weighed is

placed. The fulcrum G is moved until the weight^jjllaced

in the scale-pan & counterbalanced by that of the, steelyard.

The beam is graduated so that the position of G, when the

beam balances, gives the corresponding weight in A,

* To obtain the graduations.

Let P be the weight of the steelyard and scale-pan,

acting through the point G of the steelyard. It is obvious
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that the zero gmduation is at Oy since the fulcrum must*
be at 0, when the beam balances without any weight in

the scale-pan. '

Let C be the position of the graduation », i.e. the
point where the fulcrum is when there is a weight nP in

the s*bale-pan, and the beam balances.

Taking moments about (7, we have

nP .AU^P .CG^PiAG-Apt

.AG=
n-h 1

Hence thd graduations are at distances from A equal to

AG AG AG .

2 ’ 3 ’ 4
* *

ie. the distances of the successive graduations are in

Harmonical Progression,

Ex. 1. If the beam of a balance be horizontal, yflien there are no
weights in the scale-pans, shew that if the balance be a false one, the

actual weight of a body is the geometric mean of its apparent weights

when weighed first in one scale-pan, and then in the other.

Ex? 2. If the arms of a false oalanoe be without weight and one arm
longer than the other by ^th part ^ the shorter arm, and if in using it

the substance to be weighed is pul us often into one scale as the other,

shew that the seller loses | per cent, on his transactions.
*

Ex. 3. If the bar of the common steelyard be 18 inches long, wei(fh

3 lbs. and be suspended af a point 3 inches from one extremity, what is

the greatest weight which can be measured by a movable weight of 2 lbs.?

Ana. 16 lbs.
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» Ez. 4. A comnion steelyard is 12 inches long, and with the scale-pan

weighs 1 lb., the centre of gravity of the two being 2 inches from the end

to which the scale-pan is attached; fini* the position of th^fidcrum when

the movable weight is 1 lb. and the greatest weight that can be ascer-

tained by means of the steelyard is 12 lbs. Ans. 1 in. from scale-pan

Ex. 5. The movable weight of a cmnmon steelyard is 6 oz.* A
tradesman diminishes its weight by half an ounce : of how much is. a

person defrauded who buys what appears to weigh 6 lbs. by this steelyard? *

The fulcrum is at the o. o. of the steelyard. A?i8. 8 oz.

Ex. 6. Find the length of a Danish steelyard, weighing 1 lb., when
the distance between the graduations 4 lbs. and 5 lbs. is 1 inch.

A ns. 30 in.

153. RobervaVs Balance. This consists of four uniform rodij, AB,

BD, DCt CA, fieely jointed at their extremities and forming a parallelo-

gram. The rods AB, CD can turn about pivots at their middle points

E, F, which a^e fixed.in a vertical support. The rods AB, CD are similar

in every respect, es are the rods AC, BD. E(iual scale-pans are rigidly

connected with AC and BD,

The advantage of this balance is that it does not matter« ,\herca\)outB

the scale-pans the weights to be compared arc placed.

Let the weight P, when placed in the scale-pan attached to AC,

counterbalance the weight Q placed in the other scale-pan. If now the

syatem be supposed displaced by the beams AB, CD turning through a

small angle, it is clear that the centres of mass of AB, CD suffer no

displacement, while that of BD and its scale-pan is raised or lowered

through a vertical distance p, say, and the centre of mass of AC and its
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scale-pan is lowered or raised throogh the same distance. The yirtoal*

work done by the weight of BD will be e^ual to, but of opposite sign to,

that done by the weight of AC, iklso the algebraical sum of the virtual

work done by the internal forces of the system is zero. The equation of

virtual work is therefore Pp- Qp=0, since P, Q move through the same
veijiical distance as AC, and BD viz. p; therefore P<=Q. This 'result

holds wherever P and Q arg pldced in their respective scale-pans, i.e.

whatever be their distances from the vertical support.
"

154. TJie Differential Wheel and Axle, In order to raise a very

large weight by means of a comparatively small power, with the help of

the ordinary * wheel and axle’, it would be necessary to make either th^

radius of the wheel inconveniently large, or else that of the axle so small

that it would be unable to bear the strain put upon it. This difficulty is

got over in the * Differential Wheel and Axle’. This consists of two axles

B and C, of different radii, rigidly connected together and jiurning about

their common axis AE, which is horizontal and turns in fixed sockets.

The p#wer P is applied at right angles to the axis^and at the end of an

arm AD, the * wheel’ ; the weight 'W .s attached to a pulley supported by

a rope which is wrapped tne way .-oand B, and the other way round C

:

P and the rope round the thicker axle B tend to turn 4he machine in

opposite directions.
^

To find the Conditione of Equilibrium,

Let a be the length of AD, h, e the radii of B, C respectively, and T
the tension of the rope supporting the pulley.
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« Since the pulley is in equilibrium

’2r‘=W^

Since the machine is in equilibrium, ttiking moments about the axis AE,

we have

Pfl~r6+Tr=0,
^

‘

Pa^T(h-e)= iW(b-c),

or
^

P:W=b-c:2a. •

Hence by making the radii of B and C as nearly equal as we please, the

weight which a given powerP can raise, may be increased to any extent.

The principle of work also enables us to obtain this result very

easily.

In practice, this machine is useless, as in order to raise the weight

through an appreciable height, the length of rope required would be vc ry

great. This difficulty is however got over in a modification of the

differential wheel and axle, known from the name of the patentee, as

WeatofCa Differential Pulley.

In the Differential Pulley shewn in figure 128, an endless chain passes

over a fixed pulley P, under a movable pulley to which the weight is

attached, and then over another fixed pulley C, a little smallj'r than, but
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ooaxfal with B : the two ends of the chain are joined so as to form a loop ^

the Power is applied to the right-hand portion of the loop: to prevent the .

chain from slipping, there are cav^lies formed in the circumferences of the

upper pulleys into which the links of the chain fit.

• The condition of equilibrium is obtained as in the differential wheel

and axle, and is the same, if we write h for u, i.e. is

,
'

. P*i ]r=6-c:26,

’•where h is the radius of the larger fixed pulley, c that of the smaller.

165. Hunter's Differential Screw, This consists of a screw AD
which works in a fixed nut' CC, AD is hollow and has a thread cut

inside it, in which a solid screw DR woiks. DE is.prevented from turn-

ing round by some means, for instance, by means of a rod FBF* rigidly

FIg.129

connected with it, and whose ends work in ’smooth grooves, so that the

screw DE can only move in a direction parallel to its axis.

The weight W is the resistance exerted by any substance placed

between E and the base GG' of the framework CGG*C\ The power P is

applied at the extremity of the arm AB which ts at right angles to and

rigidly connected with the screw if D.
•

Condition of Equilibrium. Let bs the lergtlf of AB^ h, E the dis-

tances between consecutivf threads of AD, DE respectively.

Let us see the effect of the arm AB making a comj&lete revolution.

AD will clearly descend through a distance h: DE cannot turn with Af),

and therefore will move upwards relatively to iiD through^a space hf, i«e.

will actually descend through a space /i- V : this is therefore the distance

through which the weight is moved.
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Let ns suppose the virtual displacement made to be that which would

be produced by P moving its point of application through a small angle

so that in consequence the weight iescends through a distance x

:

as

the distance through which DE descends is proportional to the angle

through which AD turns, xl(h-h*)=6j2v. As P and jr are the onl^

forces that do work during the above displacement, the equation of virjbual

work is ,

P.a0-Wx=Q, * '

/. P.2Ta=:W"(A-V).

This relation might have been obtained by an extension of the method

adopted in Art. 14G.

It is clear that by making U and E sufficiently nearly equal, we can

make WjP as great as we please , where cho same result is obtained in

the simple screw only by making a inconveniently large, or by making

h so small that the thread is too weak to sU|;port the pressure on it.

‘ ^EXAMPLES ON CHAPTER VH.

1. If a power P acting horizontally will support a weight U'’jOn a

plane of inclination a, and would also support it on a plane di' inclination

/S, acting parallel to the plane, the pressure on the plane in the former

case being double that in the latter, prove that a— 4 cos“^ (J).

2. If in fhe first system there be tvro pulleys, the fixed ends only of

the strings being parallel, and the power horizontal, })rove that the

mechanical advantage is

3. In the first system the weights of the pulleys beginning with the

highest are in a. p. and a power P supports a weight W

;

the pulleys are

then reversed, the highest being placed lowest and so on, and now W and

P when interchanged ^re in equilibrium; shew that n {W-\- P) — 2W',

where W' is the total weight of the pulleys and 7i is the number of them.

<

4. If there be n {fcilleys in the third systeih, and if the string which

goes over the lowest have the end at which power is usually hung,

passed under another movable pulley, over a fixed pulley, and then

attached to the weight W

;

and if the weight of each pulley bo w and no
other power be used, prove that W= (3 .

2***"^ ~ -
1) w,

* •

5. In a weighing machine constructed on the principle of the

common steelyard the pounds are read off by graduations reaching firom
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0 to f4, and the stones by weights hung at the end ot the ann; if the
,

weight corresponding to one stone be 7 oz., the moyable weight ) lb., and
the length of the arm one foot, firove that the distance between suc-

cessive graduations is | inches.

* 6. Shew that, in the third system, if there are n pullies, each of

diameter 2a and weight w, the distance of the point of suspension of the

weight from the line of action^f the power is equal to

• 2*^1 ir+f(n-3)2*‘ +n+3]w

7. In the first system of pulleys, shew that, whatever be the weights

of the pulleys, the equilibrium will not be affected by increasing P,

Wt and the weight of each pulley, by the same amount.

8. A weight W is weighed by a common steelyard, but a weight Q is

Rubstifuted for the ]/ ]
jr movable weight P. Shew that the error is

(W v'bja) (P-Q)lQ, ^\hero w is the weight of the steelyard, and 6, a

the distances from the fulcrum of the centre of gravity and of the scale-

pan in 'which w is placed.
^

•

9. A false balance, the weight of whose beam may be neglected, has

given^ weights in the pans, which weights are afterwards interchanged.

In the two positions of equilibrium the beam makes complementary

angles with the vertical. Shew that the lino, joining the point of

suspension to the middle point of the beam, makes with the beam twice

the angle, that the beam makes with the vertical in one of its positions.

10. The'weight of a common steelyard is Q, and the distance of its

fulcrum from the point from which the weight hangs is a, when the

instrument is in perfect adjustments ; the fulcrum is displaced to a

distance a+ a from this end ; shew that the correction to be applied to

give the true weight of a body, which in the imperfect instrument appears

to weigh (W+P+Q) a/(a-|-a), P being the piovable weight.

11^ If in the first system, P is the power (acting upwards), W the

weight, and R the stress on the beam from which tho pulleys hang, shew

that R is greater than JF
(J
- 2-*) an i less than (2" - 1) P.

12. If on a steelyard the movable weight P which €orms the power

be increased in the ratio 1 -f ft : 1, prove that the consequent error in H',

the weight to be found, is ftr, where Y is the weight that must be removed

from Tr in order to preserve equilibrium when P is moved dose to the

fulcrum.
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,
18. Prove that, if in a machine the weight can be supported iy the

friction alone, then in raising the weight half the power at least is

wasted in overcoming friction. |

Apply this to the differential pulley ; and prove that if the weight can

be supported by friction alone, the radius of the axle must be greater thaa

the difference of the ladii of the pplleys multiplied by the cosecant of, the

angle of friction. «
(

14. A sinplp movable pulley, weight is just supported by the«

power P, which is applied at one end of a cord which goes under the

pulley and is then fastened to a fixed point : shew that if be the angle

subtended at the centre by the part of the string in contact with the

pulley, it is given by the equation

P (1 - sin 0+ .^*)^= W;

16.

A true balance is in equilibrium with unequal weights P, Q in its

scales. If a small weight be added to P, the consequent vertical displace-

ment of Q is equal to that which would be the vertical displacement of P,

were the sametimalT weight to be added to Q instead of to P.
«

16. Prove that in the third system, if the pulleys be small compared

with tho lengths of the strings, the necessary correction fo^ the weights

of the strings is the addition to TP, Pg, respectively, of the

weights of lengths + -
//j), 2 (/13 - hj, . . . 2 (h^ - ti) of

string: where /ij, hj, //j, ... are the heights of the n pulleys (whose

weights are P^, Pj, . . respectively) above the line of attachment, sup-

posed horizontal, of the strings to the weight jr, and h the height of the

point of attachment of the power above the same line.

17. In graduating a steelyard to weigh pounds marks are made with

a file, a weight x being removed for each notch. With the movable

weight P at the end of the beam, n lbs. can be weighed after the gradua-

tion is completed, (71+ 1) before it is begun, shew that n (n+ 1) = 2P/j', and

find the error made in Weighing m pounds. The c. o. of the steelyard is

originally under the point of suspension.
,

e
18. A Banish steelyard, weight W lbs. and accurately graduated, is

painted. In consequence of the paint, the Apparent weights of two

known weights 'of X lbs. and Y lbs. are found when weighed by the

stcj^lyard to be (A -os) lbs., (Y-y) lbs. respectively. Prove that the

centre of gravity of the paint divides the graduated arm in the ratio

W (x-y) : Yx-Xy*, and that its weight is, to a first approximation,

«(W+ y)/(X- Y)+y {W+X)I(Y-^X).
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19? A brass figure ABDC, ofuniform thickness, bounded by a circular

arc BDC (greater than a semicircle) and two tangents AB, AC inclined

at an angle 2a, is used*as a letter*A|eigher as follows. 0 the centre of the

circle is a fixe^ point, about which the machine can turn freely, apd a

'alight P is attached to the point Ay the weight of the machine itself

bein|; xo. The letter to bo weighed is suspended from a clasp (whose

weight may be neglected) at ^ on the rim of the circle, 01> being per-

pefidicular to OA. The circle is graduated and is read by a pointer

which hangs vertically from O : when tliere is no letter attached, the

point A is vertically below 0, and the pointer indicates zero. Obtain a

formula for the graduation of the circle, and shew that if P—\ xo sin^ a,

the reading of the machine will be ^ xo when OA makes with the vertical

an angle equal to

tan 1
I sin^ a+ 2 sin a eos a]

(
(it 4 2a) sin** a + 2 cos a

J

20. A common steelyard is graduated on the assumptio*ns that its

weight IS Q, and that the movable weight is Tr, both of which assumptions

are incorrect. If two masses whose real weights are P arffi Jl appear to

W^igh P+-.Y, and B + Y, then the weight of thb steelyard and the movable

weight are less than their assumed values by

(X- y)ana I [X- 1')+ {PY-nx)

respectively, where ft, a are the distances of the fulcrum from the centre

of gravity of the bar and the point of attachment of the substance to be

weighed, and D^P - B +X- Y.
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1. If a solid cube of finite size be cut by parallel

planes into n slices of equal thickness, we dan by sufficiently

increasing n make the volume of each slice smaller.than

any assignable volume. The volume of a slice is in this

case said to be ultimately an indefinitely small quantity.

An indefiiiitely small quantity, then, is one which
though itself less than any assignable quantity, yet when
multiplied by a sufficiently great number amfxmts to a
finite quantity. It is often said to be ultimately zero, but
it must be understood that it is not absolute zero, which
does not amount to a finite quantity, by however great a

quantity it is multiplied.

Let the above cube be now cut by planes parallel to

another face, so that each slice is divided into n equal

prisms, each having square endh. Again, let the cube be
cut by planes parallel to a third face, so that each prism is

divided into n equal cubes. The total number of cubes is

w*, of prisms and of slices n
;
and it requires n prisms

to make a slice, or n* cubes. It follows then that, vdien

n is increased indefinitely, a slice, a prism, and,a cube be-

come all indefinitely small, but that lAiough n slices make
up a fihite volume, n prisms do not, and though the sum
of prisms is finite, that of cubes is indefinitely small.

Tlierefore the ratio of a prism to a slice is indefinitely

small, and also that of a cube to a prism, and d fortiori

that of a cube to a slice. This is usually expr^sssed by
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saying that a slice, a prism, and a cube are respectively of i

the first, second and iJdrd orders of indefinitely small

quantities. ,
•

, One indefinitely small quantity \s of a higher order

than another, when the ratio of the first to the second is

indfefinitely small. ^

• Two quantities are equal when their difference is

indefinitely small compared with either: i.o. two finite

quantities are equal when their difference is an inde-

finitely small quantity, and two indefinitely small quanti-

ties are equal when their difference is a small quantity

of higher order.

When we assert that the algebraical sum of a finite

number of indefinitely small quantities is zero, we are not

stating a truism, but mean that they are so related that

theis algebraical sum is of a higher order than^hat of the

quantities involved. -
*

2. Pfop. Tf two series, consisting of the same number

of indefinitely small quantities of the same order, are such,

that each term of the one bears to the corresponding

term of the other a ratio differingfrom k {a finite quantity)

by an indefinitely small quantity, the sum of the' one series

is k into the sum of the other.

Let ttg, ...a^ be the first series, b^, ...6^ the second,

so that

= & + + +
‘'a

where c^..x^ are indefinitely small ; let c be the greatest

of thSse quantities. *

Then «

a, + o,+ ... a„ = & (6, + 6, + . + + V.'+ •••

S (a) — & S (6) isnot > c2 (6);

2(o) = A2(6),

siilce c2 {b) is indefinitely small compared with kX (b).
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Oor. Hence two infinite series of indefinitely small

quantities of the first order, such that each term of the one

differs from the correspondilig term of the; other by a

quantity of the second order, are equal.
•

This explains why in Arts. 97, 99, 101 and 102, we
have neglected one infinite serie^^ and retained another;

this is done when the first series is of a higher order thar^

the second.

3. As an illustration of these principles wc will give

proofs of Guldin s theorems.

One theorem is, that the volume, generated hy the com-

plete revolution of a plane area about any straight line in

its plane and not cutting it, is equal to that of a right

cylinder whose section is the plane area and height the

Imgth of the j)ath described by the centre of mass of the

area.

Draw a number of straight lines at right angles to* the

line ABy about which the revolution takes place, dividing

the area S into n strips of equal breadth. Let Pp, Qq be

two consecutive lines of this sy»tem, typical of the rest,

My N the points where they meet AB.

Draw FR, pr perpendicular to Qq,

The volume, generated by the revolution of PRrp-
about AB, differs from that generated by FQqp by the

volumes generated by the two curvilinear triangles FQR,
pqr. •

But when n increased indefinitely, the breadth*'only

of the rectangle is diminished indefmitely, whereas both

length and breadth of each triangle is diminished in-

definitely; the volumes generated by the latter are

therefore of a higher order ’than that generated by the

former.

Hence the total volume generated by the area equals
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the sum of the volumes generated by the rectangles of,

which Pr is a type, i.e.

• = 2 (vrPAr

.

!br- 7rp3r .

= ir2 {(P3f -pM){PM+pM) MN]
= -ttS MN'(P3I+pM)].

• Also the sum of the areas of the rectangles is the area

of the ttguie IS
;
and since they differ by the sum of the

areas of the triangles PQR, &c., which are of a higher

Older than the rectangles, the centres of mass of the sum
of the rectangles and the figure S must be coincident.

Xlierufore ac, the distance of the CM of aSi from AB

_ .
MN, I (Pilf

+

pM)]
^ ^{Pp,MN)

_ 2 voi. generated by5
TT X area B ’

.• volume genoiatod by >Si = aS'. 27r.r.

The second theorem is, that the area of the surface,

generated hy the revolution of a curve about any straight

line in its plane and not cutting the curve, is equal to the

rectangle^ whose length is the length of the curve and
breadth the distance of the curve's centre of mass from
the straight line.

Let PQ be a side of a polygon, either inscribed within or

circumscribed about the curve : let R the middle point

of PQ, and therefore its centre of mass. DrawRK perpen-

dicular to the line AB, about which the fturve revolves.

As in Art. 99, if can be aewn that the area of the

surface generated by the revolution of PQ about AB is

2^PQ.RK.

Therefore the total surface generated by the revolution

of the polygon about AB
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^t(2wPQ.RK)
=^2irt{PQ.RK)

= iirx X perimeter of polygon!

where x is the distance of its centre of mass from AB. •

When the lengths of the sidps of the inscribed and
circumscribed polygons are diminished indefinitely afid

their number increased indefinitely, their perimeters differ

by indefinitely small quantities, and their centres of mass
become coincident. The surfaces generated by each are

therefore equal.

It is assumed as axiomatic, that as the perimeter of the

curve lies in position between the two polygons which
ultiniately coincide, it is equal to the perimeter of either

polygon, its centre of mass coincides with that of either

polygon, and the surface generated by it is equal to that

generated by Sither polygon.

Hence the surface generated by the curve i^ equdl to

the product of the length of the curve into the length of

the path traced out by its centre of mass.^

Each of Guldin’s theorems, can .easily be extended to

the case in which the revolution is not a complete one.

There is no limitation in either as to the number of times,

in which a straight line at right angles to AB cuts the

generating curve.

Ex. Find the volume and surface of an anchor-ring, the figure

generated by the revolution of a circle about a line in its plane, and not

intersecting it.

Ans, Vol.=:2?r*a^, surface =4ir*ac, where a is the radius i6f the

circle, and e the distance of its centre from the^line.

4. The *' following proposition has been assumed
throughout. The limit of

l'’ + 2'‘+ 3'’+ .

1

rT'- p+1’
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where p is any positive quantity^ and n is increased in-»

definitely.

Let denote 1**+ 2^+ 3^-+...(w — 1)".

- (» - ir> = (|, + 1) {«- 1)"+ («

-

ir* + &c.

.
•

.(n - l)*^* - (n -•2r‘= (p + 1) (« _ 2)'

/. by addition

n’^‘-l-^’ = (p + l) **5;

+ (£±l).g « . (P + ^)P(P- 1) a
“

« ^

.,
^ 1 .A

^) + 1 {p + 1)
^

n^"^^

+ P.I. ^%=i+p(p- J)
A-

^2! «. n" ^ 3!

S'" (n — 1')'^'

But ^ obviously < , i.e. is < 1.

Similarly ^^=^1 is < 1, if p is > ?\ ^

Hence, when p is integral, „

jp + 1 n^^^ n ^ ^ n»
*

where -4,, -4^, A^, &c. are all finite quantities

;

S 1
• * ^ increased indefinitely,

o. 18
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Ifp be fractional

= 0 ultimately^ when p is > r,•

, . S y . 1
when^is<r,^i

is numerically < ^ +^^3, &c

|

• JL _
‘

* |) +

1

i e. =5 0 ultimately

Hence the result holds, whether p is integral or not.
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Nature says: “To simplify the study of statics, and to make it at-

tractive at the same time, is by no means an easy task, but the author
of this little book has gone far towards succeeding in doing this. With
the approvalof several experienftd teachers, the principle of the trans-

missibility of lorce has been discartied in favour of the ordinary method,
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axle, which is quite beyond the powers of an ordinary student either to
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by the well-known proof of Duchayla and the modern deduction from
the laws of motion of the fundamental proposition known os the ‘ paral-
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mentary knowledge of geometiy and trigonometry. After the most
important propositions, appropriate examples are given in illustration,

wkh carefully arranged exercise? for the solution of the student. Test
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high place which the a4|^or*s lai^ work on the subject has secured is
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on the prdinary lines.**
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